Skip to main content
Log in

Performance Modeling and Algorithm Characterization for Robust Image Segmentation

Robust Image Segmentation

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper presents a probabilistic framework based on Bayesian theory for the performance prediction and selection of an optimal segmentation algorithm. The framework models the optimal algorithm selection process as one that accounts for the information content of an input image as well as the behavioral properties of a particular candidate segmentation algorithm. The input image information content is measured in terms of image features while the candidate segmentation algorithm’s behavioral characteristics are captured through the use of segmentation quality features. Gaussian probability distribution models are used to learn the required relationships between the extracted image and algorithm features and the framework tested on the Berkeley Segmentation Dataset using four candidate segmentation algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borsotti, M., Campadelli, P., & Schettini, R. (1998). Quantitative evaluation of color image segmentation results. Pattern Recognition Letters, 19, 741–747.

    Article  MATH  Google Scholar 

  • Brox, T., & Weickert, J. (2004). Level set based image segmentation with multiple regions. In LNCS : Vol. 3175. Pattern recognition (pp. 415–423). Berlin: Springer.

    Google Scholar 

  • Chalmond, B., Graffigne, C., Prenat, M., & Roux, M. (2001). Contextual performance prediction for low-level image analysis algorithms. IEEE Transactions on Image Processing, 10, 1039–1046.

    Article  MATH  Google Scholar 

  • Chiang, H. C., & Moses, R. L. (1999). ATR performance prediction using attributed scattering features. In Proceedings of SPIE (Vol. 3721, pp. 785–796). Bellingham: SPIE.

    Chapter  Google Scholar 

  • Chiang, H. C., Moses, R. L., & Potter, L. C. (2000). Classification performance prediction using parametric scattering feature models. In Proceedings of SPIE (Vol. 4053, pp. 7546–557). Bellingham: SPIE.

    Chapter  Google Scholar 

  • Cho, K., Meer, P., & Cabrera, J. (1997). Performance assessment through bootstrap. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 1185–1198.

    Article  Google Scholar 

  • Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 603–619.

    Article  Google Scholar 

  • Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis. New York: Wiley-Interscience.

    MATH  Google Scholar 

  • Ettinger, G. J., Klanderman, G. A., Wells, W. M., & Grimson, W. E. L. (1996). Probabilistic optimization approach to SAR feature matching. In Proceedings of SPIE (Vol. 2757, pp. 318–329). Bellingham: SPIE.

    Chapter  Google Scholar 

  • Felzenszwalb, P., & Huttenlocher, D. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59, 167–181.

    Article  Google Scholar 

  • Fogel, I., & Sagi, D. (1989). Gabor filters as texture discriminator. Biological Cybernetics, 61, 103–113.

    Article  Google Scholar 

  • Freixenet, J., Munoz, X., Raba, D., Marti, J., & Cufi, X. (2002). Yet another survey on image segmentation: Region and boundary information integration. In ECCV’02: Proceedings of the 7th European conference on computer vision—Part III (pp. 408–422). London: Springer.

    Google Scholar 

  • Fu, K., & Mui, J. (1981). A survey on image segmentation. Pattern Recognition, 13, 3–16.

    Article  MathSciNet  Google Scholar 

  • Haralick, R. M., & Shapiro, L. G. (1992). In Computer and robot vision (Vol. 1, pp. 303–370). Reading: Addison-Wesley.

    Google Scholar 

  • Konishi, S., & Yuille, A. L. (2000). Statistical cues for domain specific image segmentation with performance analysis. In IEEE computer vision and pattern recognition or CVPR I (pp. 125–132).

  • Laws, K. I. (1980). Textured image segmentation. Ph.D. thesis.

  • Liu, J., & Yang, Y. H. (1994). Multiresolution color image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, 689–700.

    Article  Google Scholar 

  • Martin, D. R., Fowlkes, C. C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In International conference on computer vision II (pp. 416–423).

  • Meila, M. (2005). Comparing clusterings: an axiomatic view. In ICML’05: Proceedings of the 22nd international conference on machine learning (pp. 577–584). New York: Assoc. Comput. Mach.

    Chapter  Google Scholar 

  • Nair, D., & Aggarwal, J. K. (1996). A focused target segmentation paradigm. In Fourth European conference on computer vision (Vol. 1, pp. 579–588). Berlin: Springer.

    Google Scholar 

  • Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26, 1277–1294.

    Article  Google Scholar 

  • Pavlidis, T. (1977). Structural pattern recognition. Berlin: Springer.

    MATH  Google Scholar 

  • Perner, P. (1999). An architecture for a CBR image segmentation system. In ICCBR’99: Proceedings of the third international conference on case-based reasoning and development (pp. 525–534). Berlin: Springer.

    Google Scholar 

  • Puzicha, J., Hofmann, T., & Buhmann, J. M. (1999). Histogram clustering for unsupervised segmentation and image retrieval. Pattern Recognition Letters, 20, 899–909.

    Article  Google Scholar 

  • Randen, T., & Husoy, J. H. (1999). Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 291–310.

    Article  Google Scholar 

  • Ren, X., & Malik, J. (2003). Learning a classification model for segmentation. In International conference on computer vision (pp. 10–17).

  • Reynolds, R. G., & Rolnick, S. R. (1995). Learning the parameters for a gradient-based approach to image segmentation using cultural algorithms. In Proceedings of the first international symposium on intelligence in neural and biological systems (INBS’95) (Vol. 240). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 888–905.

    Article  Google Scholar 

  • Shufelt, J. A. (1999). Performance evaluation and analysis of monocular building extraction from aerial imagery. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21, 311–326.

    Article  Google Scholar 

  • Spann, M., & Nieminen, A. (1988). Adaptive Gaussian weighted filtering for image segmentation. Pattern Recognition Letters, 8, 251–255.

    Article  Google Scholar 

  • Spann, M., & Grace, A. (1994). Adaptive segmentation of noisy and textured images. Pattern Recognition, 27, 1717–1733.

    Article  Google Scholar 

  • Tourassi, G. D., Frederick, E. D., Vittitoe, N. F., & Coleman, R. E. (2000). Fractal texture analysis of perfusion lung scans. Computers in Biomedical Research, 33, 161–171.

    Article  Google Scholar 

  • Tuceryan, M., & Jain, A. K. (1993). Texture analysis. Handbook of Pattern Recognition and Computer Vision, 235–276.

  • van Rijsbergen, C. J. (1979). Information retrieval (2nd ed.). London: Butterworths.

    Google Scholar 

  • Yang, A. Y., Wright, J., Sastry, S. S., & Ma, Y. (2006). Unsupervised segmentation of natural images via lossy data compression (Technical Report UCB/EECS-2006-195). EECS Department, University of California, Berkeley.

  • Zhang, Y. J. (1996). A survey on evaluation methods for image segmentation. Pattern Recognition, 29, 1335–1346.

    Article  Google Scholar 

  • Zhang, X., & Haralick, R. M. (1993). Bayesian corner detection. In British machine vision conference.

  • Zhang, H., Cholleti, S., Goldman, S. A., & Fritts, J. E. (2006). Meta-evaluation of image segmentation using machine learning. In IEEE conference on computer vision and pattern recognition I (pp. 1138–1145).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shishir K. Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, S.K. Performance Modeling and Algorithm Characterization for Robust Image Segmentation. Int J Comput Vis 80, 92–103 (2008). https://doi.org/10.1007/s11263-008-0130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0130-z

Keywords

Navigation