Skip to main content
Log in

An Alternative Approach to Computing Shape Orientation with an Application to Compound Shapes

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

We consider the method that computes the shape orientation as the direction α that maximises the integral of the length of projections, taken to the power of 2N, of all the straight line segments whose end points belong to the shape, to a line that has the slope α. We show that for N=1 such a definition of shape orientation is consistent with the shape orientation defined by the axis of the least second moment of inertia. For N>1 this is not the case, and consequently our new method can produce different results. As an additional benefit our approach leads to a new method for computation of the orientation of compound objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boutsen, L., & Marendaz, C. (2001). Detection of shape orientation depends on salient axes of symmetry and elongation: Evidence from visual search. Perception & Psychophysics, 63(3), 404–422.

    Google Scholar 

  • Chandra, D. V. S. (1998). Target orientation estimation using Fourier energy spectrum. IEEE Transactions Aerospace and Electronic Systems, 34(3), 1009–1012.

    Article  Google Scholar 

  • Cortadellas, J., Amat, J., & De la Torre, F. (2004). Robust normalization of silhouettes for recognition applications. Pattern Recognition Letters, 25(5), 591–601.

    Article  Google Scholar 

  • Fahlbusch, S., et al. (2005). Nanomanipulation in a scanning electron microscope. Journal of Materials Processing Technology, 167(2–3), 371–382.

    Article  Google Scholar 

  • Ha, V. H. S., & Moura, J. M. F. (2005). Affine-permutation invariance of 2-d shapes. IEEE Transactions on Image Processing, 14(11), 1687–1700.

    Article  Google Scholar 

  • Jafari-Khouzani, K., & Soltanian-Zadeh, H. (2005). Radon transform orientation estimation for rotation invariant texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6), 1004–1008.

    Article  MathSciNet  Google Scholar 

  • Jain, R., Kasturi, R., & Schunck, B. G. (1995). Machine vision. New York: McGraw-Hill.

    Google Scholar 

  • Jiang, X.Y., & Bunke, H. (1991). Simple and fast computation of moments. Pattern Recognition, 24(8), 801–806.

    Article  Google Scholar 

  • Kim, S., & Kweon, I. S. (2008). Scalable representation for 3D object recognition using feature sharing and view clustering. Pattern Recognition, 41(2), 754–773.

    Article  MATH  Google Scholar 

  • Kim, W. Y., & Kim, Y. S. (1999). Robust rotation angle estimator. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(8), 768–773.

    Article  Google Scholar 

  • Klette, R., & Rosenfeld, A. (2004). Digital geometry. San Mateo: Morgan Kaufmann.

    MATH  Google Scholar 

  • Lazebnik, S., Schmid, C., & Ponce, J. (2005). A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1265–1278.

    Article  Google Scholar 

  • Lin, J.-C. (1993). Universal principal axes: An easy-to-construct tool useful in defining shape orientations for almost every kind of shape. Pattern Recognition, 26(4), 485–493.

    Article  Google Scholar 

  • Lin, J.-C. (1996). The family of universal axes. Pattern Recognition, 29(3), 477–485.

    Article  Google Scholar 

  • Mardia, K. V., & Jupp, P. E. (1999). Directional statistics. New York: Wiley.

    Google Scholar 

  • Marendaz, C., Stivalet, P., Barraclough, L., & Walkowiac, P. (1993). Effect of gravitational cues on visual search for orientation. Journal of Experimental Psychology: Human Perception and Performance, 19, 1266–1277.

    Article  Google Scholar 

  • Martinez-Alajarin, J., Luis-Delgado, J. D., & Tomás-Balibrea, L.-M. (2005). Automatic system for quality-based classification of marble textures. IEEE Transactions on Systems, Man and Cybernetics, Part C, 35(4), 488–497.

    Article  Google Scholar 

  • Palmer, S. E. (1980). What makes triangles point: Local and global effects in configurations of ambiguous triangles. Cognitive Psychology, 12, 285–305.

    Article  MathSciNet  Google Scholar 

  • Palmer, S. E. (1999). Vision science-photons to phenomenology. Cambridge: MIT Press.

    Google Scholar 

  • Rock, I., Schreiber, C., & Ro, T. (1994). The dependence of two-dimensional shape perception on orientation. Perception, 23, 1409–1426.

    Article  Google Scholar 

  • Shen, D., & Ip, H. H. S. (1996). Optimal axes for defining the orientations of shapes. Electronic Letters, 32(20), 1873–1874.

    Article  Google Scholar 

  • Shi, B., Murakami, Y., & Wu, Z. (1998). Orientation of aggregates of fine-grained soil: quantification and application. Engineering Geology, 50, 5970.

    Article  Google Scholar 

  • Tsai, W. H. (1985). Moment-preserving thresholding. Computer Vision, Graphics and Image Processing, 29, 377–393.

    Article  Google Scholar 

  • Tsai, W. H., & Chou, S. L. (1991). Detection of generalized principal axes in rotationally symetric shapes. Pattern Recognition, 24(1), 95–104.

    Article  MathSciNet  Google Scholar 

  • Wang, L., Tan, T. N., Hu, W. M., & Ning, H. Z. (2003). Automatic gait recognition based on statistical shape analysis. IEEE Transactions on Image Processing, 12(9), 1120–1131.

    Article  MathSciNet  Google Scholar 

  • Wei, L., Keogh, E., & Xi, X. (2006). SAXually explicit images: Finding unusual shapes. In Int. conf. on data mining, pp. 711–720.

  • Žunić, J., Kopanja, L., & Fieldsend, J. E. (2006). Notes on shape orientation where the standard method does not work. Pattern Recognition, 39(5), 856–865.

    Article  MATH  Google Scholar 

  • Žunić, J., Rosin, P. L., & Kopanja, L. (2006). On the orientability of shapes. IEEE Transactions on Image Processing, 15(11), 3478–3487.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joviša Žunić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Žunić, J., Rosin, P.L. An Alternative Approach to Computing Shape Orientation with an Application to Compound Shapes. Int J Comput Vis 81, 138–154 (2009). https://doi.org/10.1007/s11263-008-0149-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-008-0149-1

Keywords

Navigation