Skip to main content
Log in

Using the Particle Filter Approach to Building Partial Correspondences Between Shapes

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Constructing correspondences between points characterizing one shape with those characterizing another is crucial to understanding what the two shapes have in common. These correspondences are the basis for most alignment processes and shape similarity measures. In this paper we use particle filters to establish perceptually correct correspondences between point sets characterizing shapes. Local shape feature descriptors are used to establish the probability that a point on one shape corresponds to a point on the other shape. Global correspondence structures are calculated using additional constraints on domain knowledge. Domain knowledge is characterized by prior distributions which serve to characterize hypotheses about the global relationships between shapes. These hypotheses are formulated online. This means global constraints are learnt during the particle filtering process, which makes the approach especially interesting for applications where global constraints are hard to define a priori. As an example for such a case, experiments demonstrate the performance of our approach on partial shape matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alt, H., Scharf, L., & Scholz, S. (2006). Probabilistic matching of sets of polygonal curves. In Proceedings of the 22nd European workshop on computational geometry (EWCG) (pp. 107–110). Delphi, Greece

  • Back, T., Hammel, U., & Schwefel, H. P. (1997). Evolutionary computation: Comments on the history and current state. IEEE Transactions on Evolutionary Computation, 1, 3–17.

    Article  Google Scholar 

  • Belongie, S., Malik, J., & Puzicha, J. (2002). Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 705–522.

    Article  Google Scholar 

  • Chen, L., Feris, R., & Turk, M. (2008). Efficient partial shape matching using smith-waterman algorithm. In Computer vision and pattern recognition workshops, 2008 CVPRW ’08 IEEE.

  • Crisan, D., & Doucet, A. (2002). A survey of convergence results on particle filtering methods for practitioners. IEEE Transactions on Signal Processing, 50(3).

  • de Bruijne, M., & Nielsen, M. (2004). Image segmentation by shape particle filtering. In ICPR ’04: Proceedings of the pattern recognition, 17th international conference on (ICPR’04) (Vol. 3, pp. 722–725). Washington: IEEE Computer Society.

    Chapter  Google Scholar 

  • DelMoral, P., Doucet, A., & Jasra, A. (2007). Sequential Monte Carlo for Bayesian computation. In Bayesian statistics (Vol. 8, pp. 1–34). London: Oxford University Press.

    Google Scholar 

  • Doucet, A., De Freitas, N., & Gordon, N. (eds.), (2001). Sequential Monte Carlo methods in practice. New York: Springer.

    MATH  Google Scholar 

  • Doucet, A., DelMoral, P., & Jasra, A. (2006). Sequential Monte Carlo samplers. Journal of the Royal Statistics Society B, 68(3), 411–436.

    Article  MATH  MathSciNet  Google Scholar 

  • Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.

    MATH  Google Scholar 

  • Gorelick, L., Galun, M., & Brandt, A. (2006). Shape representation and classification using the Poisson equation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 1991–2005.

    Article  Google Scholar 

  • Gower, J., & Dijksterhuis, G. (2005). Procrustes problems (Vol. 70). New York: Springer.

    Google Scholar 

  • Haralick, R. M., & Shapiro, L. G. (1979). The consistent labeling problem: Part I. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI, 1(2), 173–184.

    Article  MATH  Google Scholar 

  • Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Cambridge: The MIT Press.

    Google Scholar 

  • Kittler, J., & Illingworth, J. (1986). Relaxation labelling algorithms-a review. Image and Vision Computing, 3(4), 206–216.

    Article  Google Scholar 

  • Lakaemper, R., & Sobel, M. (2008). Correspondences between parts of shapes with particle filters. In IEEE int. conf. on computer vision and pattern recognition (CVPR).

  • Lakaemper, R., Li, S., & Sobel, M. (2008). Partial correspondences of point sets using particle filters. In IAPR int. conf. on pattern recognition (ICPR).

  • Latecki, L. J., Lakaemper, R., & Eckhardt, U. (2000). Shape descriptors for non-rigid shapes with a single closed contour. In Proc. IEEE conf. computer vision and pattern recognition (pp. 424–429).

  • Latecki, L. J., Wang, Q., Koknar-Tezel, S., & Megalooikonomou, V. (2007). Optimal subsequence bijection. In IEEE int. conf. on data mining (ICDM).

  • Ling, H., & Jacobs, D. W. (2007). Shape classification using the inner-distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2), 286–299.

    Article  Google Scholar 

  • Liu, J. S. (2002). Monte Carlo strategies in scientific computing. Berlin: Springer.

    Google Scholar 

  • Liu, J., Chen, R., & Logvinenko, T. (2000). A theoretical framework for sequential importance sampling and resampling (Technical report). Stanford University, Department of Statistics, January 2000.

  • Milios, E., & Petrakis, E. (2000). Shape retrieval based on dynamic programming. Transactions on Image Processing, 9(1), 141–146.

    Article  Google Scholar 

  • Mokhtarian, F., Abbasi, S., & Kittler, J. (1996). Robust and efficient shape indexing through curvature scale space. In Proceedings of British machine vision conference (pp. 53–62).

  • Mokhtarian, F., Khalili, N., & Yuen, P. (2002). Estimation of error in curvature computation on multi-scale free-form surfaces. International Journal of Computer Vision, 48(2), 131–149.

    Article  MATH  Google Scholar 

  • Moral, P. D., Doucet, A., & Jasra, A. (2006). Sequential Monte Carlo samplers. Journal of the Royal Statistical Society, Series B, 68(3), 411–436.

    Article  MATH  MathSciNet  Google Scholar 

  • Perez, P., Blake, A., & Gangnet, M. (2001). Jetstream: Probabilistic contour extraction with particles. In Proc. of ICCV (pp. 424–531).

  • Qian, W., & Titterington, D. M. (1992). Stochastic relaxations and em algorithms for Markov random fields. Journal of Statistical Computing and Simulation, 40.

  • Rathi, Y., Vaswani, N., & Tannenbaum, A. (2007). A generic framework for tracking using particle filter with dynamic shape prior. IP, 16(5), 1370–1382.

    MathSciNet  Google Scholar 

  • Rosenfeld, A., Hummel, R. A., & Zucker, S. W. (1976). Scene labeling by relaxation operations. IEEE Transactions on Systems, Man and Cybernetics SMC, 6(6), 420–433.

    Article  MATH  MathSciNet  Google Scholar 

  • Sandhu, R., Dambreville, S., & Tannenbaum, A. (2008). Particle filtering for registration of 2d and 3d point sets with stochastic dynamics.

  • Schmidt, F., Farin, D., & Cremers, D. (2007). Fast matching of planar shapes in sub-cubic runtime. In IEEE international conference on computer vision (ICCV).

  • Scott, C., & Nowak, R. (2006). Robust contour matching via the order-preserving assignment problem. IEEE Transactions on Image Processing, 15(7), 1831–1838.

    Article  MathSciNet  Google Scholar 

  • Sebastian, T., Klein, P., & Kimia, B. (2003). On aligning curves. PAMI, 25(1), 116–125.

    Google Scholar 

  • Siddiqi, K., Shokoufandeh, A., Dickinson, S. J., & Zucker, S. W. (1999). Shock graphs and shape matching. International Journal of Computer Vision, 35(1), 13–32.

    Article  Google Scholar 

  • Thrun, S. (2002). Particle filters in robotics. In Proceedings of the 17th annual conference on uncertainty in AI (UAI).

  • Veltkamp, R. C., & Hagedoorn, M. (2001). State-of-the-art in shape matching (Tech. rep.). Principles of visual information retrieval.

  • Zheng, Y., & Doermann, D. (2006). Robust point matching for nonrigid shapes by preserving local neighborhood structures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 643–649.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Lakaemper.

Electronic Supplementary Material

Below is the link to the electronic supplementary material. (WMV 9.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakaemper, R., Sobel, M. Using the Particle Filter Approach to Building Partial Correspondences Between Shapes. Int J Comput Vis 88, 1–23 (2010). https://doi.org/10.1007/s11263-009-0288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-009-0288-z

Keywords

Navigation