Skip to main content
Log in

RSLAM: A System for Large-Scale Mapping in Constant-Time Using Stereo

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Large scale exploration of the environment requires a constant time estimation engine. Bundle adjustment or pose relaxation do not fulfil these requirements as the number of parameters to solve grows with the size of the environment. We describe a relative simultaneous localisation and mapping system (RSLAM) for the constant-time estimation of structure and motion using a binocular stereo camera system as the sole sensor. Achieving robustness in the presence of difficult and changing lighting conditions and rapid motion requires careful engineering of the visual processing, and we describe a number of innovations which we show lead to high accuracy and robustness. In order to achieve real-time performance without placing severe limits on the size of the map that can be built, we use a topo-metric representation in terms of a sequence of relative locations. When combined with fast and reliable loop-closing, we mitigate the drift to obtain highly accurate global position estimates without any global minimisation. We discuss some of the issues that arise from using a relative representation, and evaluate our system on long sequences processed at a constant 30–45 Hz, obtaining precisions down to a few meters over distances of a few kilometres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localisation and mapping (SLAM): Part II—state of the art. Robotics and Automation Magazine.

  • Benhimane, S., & Malis, E. (2004). Real-time image-based tracking of planes using efficient second-order minimization. In IEEE international conference on intelligent robots and systems, Sendai, Japan, vol. 1, pp. 943–948.

  • Bosse, M., Newman, P., Leonard, J., & Teller, S. (2004). Simultaneous localization and map building in large-scale cyclic environments using the atlas framework. International Journal for Robotics Research, 23(12), 1113–1139.

    Article  Google Scholar 

  • Castellanos, J., Neira, J., & Tardós, J. (2004). Limits to the consistency of EKF-based SLAM. In Proceedings of the fifth IFAC symposium on intelligent autonomous vehicles, Lisbon, Portugal.

  • Chekhlov, D., Pupilli, M., Mayol, W., & Calway, A. (2007). Robust real-time visual slam using scale prediction and exemplar based feature description. In IEEE conference of vision and pattern recognition, Minneapolis, USA, pp. 1–7.

  • Chli, M., & Davison, A. J. (2008). Active matching. In European conference on computer vision, Marseille, France, vol. 5302/2008, pp. 72–85.

  • Cummins, M., & Newman, P. (2008). FAB-MAP: Probabilistic localization and mapping in the space of appearance. International Journal for Robotics Research, 27(6), 647–665.

    Article  Google Scholar 

  • Davison, A. J. (2003). Real-time simultaneous localisation and mapping with a single camera. In IEEE international conference on computer vision.

  • Davison, A. J., Reid, I., Molton, N., & Stasse, O. (2007). Monoslam: real-time single camera slam. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 1052–1067.

    Article  Google Scholar 

  • Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localisation and mapping (SLAM): Part I The essential algorithms. Robotics and automation magazine.

  • Eade, E., & Drummond, T. (2007). Monocular SLAM as a graph of coalesced observations. In IEEE international conference on computer vision, Rio de Janeiro, Brazil, pp. 1–8.

  • Eade, E., & Drummond, T. (2008). Unified loop closing and recovery for real time monocular SLAM. In British machine vision conference, Leeds, UK.

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  • Hartley, R., & Zisserman, A. (2000). Multiple view geometry in computer vision. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Julier, S., & Uhlmann, J. (2001). A counter example to the theory of simultaneous localization and map building. Robotics and Automation, 4, 4239–4243.

    Google Scholar 

  • Klein, G., & Murray, D. (2007). Parallel tracking and mapping for small AR workspaces. In IEEE and ACM international symposium on mixed and augmented reality, Nara, Japan.

  • Konolige, K., & Agrawal, M. (2008). Frameslam: from bundle adjustment to real-time visual mapping. IEEE Transactions on Robotics, 24(5), 1066–1077.

    Article  Google Scholar 

  • Lepetit, V., & Fua, P. (2006). Keypoint recognition using randomized trees. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(9), 1465–1479.

    Article  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2(60), 91–110.

    Article  Google Scholar 

  • Mei, C., Benhimane, S., Malis, E., & Rives, P. (2008). Efficient homography-based tracking and 3-D reconstruction for single-viewpoint sensors. IEEE Transactions on Robotics, 24(6), 1352–1364.

    Article  Google Scholar 

  • Moore, D. C., Huang, A. S., Walter, M., Olson, E., Fletcher, L., Leonard, J., & Teller, S. (2009). Simultaneous local and global state estimation for robotic navigation. In IEEE international conference on robotics and automation, Kobe, Japan, pp. 3794–3799.

  • Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., & Sayd, P. (2006). Real-time localization and 3D reconstruction. In IEEE conference of vision and pattern recognition, New York, USA, vol. 1, pp. 363–370.

  • Nistér, D., & Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In IEEE conference of vision and pattern recognition, New York, USA, vol. 2, pp. 2161–2168.

  • Nistér, D., Naroditsky, O., & Bergen, J. (2006). Visual odometry for ground vehicle applications. Journal of Field Robotics, 23(1).

  • Rosten, E., & Drummond, T. (2005). Fusing points and lines for high performance tracking. In IEEE international conference on computer vision, Beijing, China, vol. 2, pp. 1508–1515.

  • Sibley, G., Mei, C., Reid, I., & Newman, P. (2009). Adaptive relative bundle adjustment. In Robotics: science and systems, Seattle, USA.

  • Sivic, J., & Zisserman, A. (2003). Video Google: a text retrieval approach to object matching in videos. In IEEE international conference on computer vision, Nice, France, vol. 2, pp. 1470–1477.

  • Smith, M., Baldwin, I, Churchill, W., Paul, R., & Newman, P. (2009). The new college vision and laser data set. The International Journal for Robotics Research, 28(5), 595–599.

    Article  Google Scholar 

  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Triggs, B., McLauchlan, P. F., Hartley, R. I., & Fitzgibbon, A. W. (1999). Bundle adjustment—a modern synthesis. In Vision algorithms: theory and practice: international workshop on vision algorithms, computer science. Berlin: Springer.

    Google Scholar 

  • Vedaldi, A., & Fulkerson, B. (2008). VLFeat: An open and portable library of computer vision algorithms. http://www.vlfeat.org.

  • Williams, B., Klein, G., & Reid, D. I. (2007). Real-time slam relocalisation. In IEEE international conference on computer vision, Rio de Janeiro, Brazil, pp. 1–8.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Mei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mei, C., Sibley, G., Cummins, M. et al. RSLAM: A System for Large-Scale Mapping in Constant-Time Using Stereo. Int J Comput Vis 94, 198–214 (2011). https://doi.org/10.1007/s11263-010-0361-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0361-7

Keywords

Navigation