Skip to main content
Log in

A Quaternion Framework for Color Image Smoothing and Segmentation

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper, we present feature/detail preserving models for color image smoothing and segmentation using the Hamiltonian quaternion framework. First, we introduce a novel quaternionic Gabor filter (QGF) which can combine the color channels and the orientations in the image plane. We show that these filters are optimally localized both in the spatial and frequency domains and provide a good approximation to quaternionic quadrature filters. Using the QGFs, we extract the local orientation information in the color images. Second, in order to model this derived orientation information, we propose continuous mixtures of appropriate exponential basis functions and derive analytic expressions for these models. These analytic expressions take the form of spatially varying kernels which, when convolved with a color image or the signed distance function of an evolving contour (placed in the color image), yield a detail preserving smoothing and segmentation, respectively. Several examples on widely used image databases are shown to depict the performance of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfsmann, D., Göckler, H. G., Sangwine, S. J., & Ell, T. A. (2007). Hypercomplex algebras in digital signal processing: benefits and drawbacks (tutorial). In EURASIP 15th European signal processing conference, EUSIPCO 2007, Poland (pp. 1322–1326).

    Google Scholar 

  • Arbeláez, P. A., & Cohen, L. D. (2006). A metric approach to vector-valued image segmentation. International Journal of Computer Vision, 69(1), 119–126.

    Article  Google Scholar 

  • Bar, L., Brook, A., Sochen, N., & Kiryati, N. (2007). Deblurring of color images corrupted by impulsive noise. IEEE Transactions on Image Processing, 16(4), 1101–1111.

    Article  MathSciNet  Google Scholar 

  • Bertelli, L., Sumengen, B., Manjunath, B., & Gibou, F. (2008). A variational framework for multiregion pairwise-similarity-based image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(8), 1400–1414.

    Article  Google Scholar 

  • Blomgren, P., & Chan, T. F. (1998). Color TV: total variation methods for restoration of vector-valued images. IEEE Transactions on Image Processing, 7(3), 304–309.

    Article  Google Scholar 

  • Boykov, Y., Veksler, O., & Zabih, R. (1999). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2001), 1222–1239.

    Google Scholar 

  • Brook, A., Kimmel, R., & Sochen, N. A. (2003). Variational restoration and edge detection for color images. Journal of Mathematical Imaging and Vision, 18(3), 247–268.

    Article  MATH  MathSciNet  Google Scholar 

  • Brox, T., Rousson, M., Deriche, R., & Weickert, J. (2003). Unsupervised segmentation incorporating colour, texture, and motion. In Computer analysis of images and patterns (pp. 353–360).

    Chapter  Google Scholar 

  • Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In IEEE computer vision and pattern recognition, CVPR (Vol. 2, pp. 60–65). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Bülow, T. (1999). Hypercomplex spectral signal representations for image processing and analysis. PhD thesis, University of Kiel, Advisor-Gerald Sommer.

  • Bülow, T., & Sommer, G. (1997a). Das konzept einer zweidimensionalen phase unter verwendung einer algebraisch erweiterten signalrepräsentation. In Mustererkennung, 1997, 19, DAGM-symposium (pp. 351–358). London: Springer.

    Google Scholar 

  • Bülow, T., & Sommer, G. (1997b). Multi-dimensional signal processing using an algebraically extended signal representation. In AFPAC ’97: Proceedings of the international workshop on algebraic frames for the perception-action cycle (pp. 148–163). London: Springer.

    Chapter  Google Scholar 

  • Caselles, V., Catte, F., Coll, T., & Dibos, F. (1993). A geometric model for active contours in image processing. Numerische Mathematik, 66, 1–31.

    Article  MATH  MathSciNet  Google Scholar 

  • Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22, 61–97.

    Article  MATH  Google Scholar 

  • Chan, T. F., Sandberg, B. Y., & Vese, L. A. (2000). Active contours without edges for vector-valued images. Journal of Visual Communication and Image Representation, 11, 130–141.

    Article  Google Scholar 

  • Comaniciu, D., & Meer, P. (2002). Mean shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 603–619.

    Article  Google Scholar 

  • Cremers, D., Rousson, M., & Deriche, R. (2007). A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. International Journal of Computer Vision, 72(2), 195–215.

    Article  Google Scholar 

  • Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A, 2(7), 1160–1169.

    Article  Google Scholar 

  • Delsuc, M. A. (1988). Spectral representation of 2D NMR spectra by hypercomplex numbers. Journal of Magnetic Resonance, 77(1), 119–124.

    Google Scholar 

  • Ell, T. (1993). Quaternion-Fourier transforms for analysis of two-dimensional linear time-invariant partial differential systems. In Proceedings of the 32nd IEEE conference on decision and control (Vol. 2, pp. 1830–1841).

    Google Scholar 

  • Ell, T., & Sangwine, S. (2007). Hypercomplex Fourier transforms of color images. IEEE Transactions on Image Processing, 16(1), 22–35.

    Article  MathSciNet  Google Scholar 

  • Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167–181.

    Article  Google Scholar 

  • Galatsanos, N. P., Wernic, M. N., Katsaggelos, A. K., & Molina, R. (2005). Multichannel image recovery. In A. Bovik (Ed.), Handbook of image and video processing. Amsterdam/San Diego: Elsevier/Academic Press.

    Google Scholar 

  • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721–741.

    Article  MATH  Google Scholar 

  • Herz, C. S. (1955). Bessel functions of matrix argument. The Annals of Mathematics, 61(3), 474–523.

    Article  MathSciNet  Google Scholar 

  • Hui, W., Xiao-Hui, W., Yue, Z., & Jie, Y. (2006). Color texture segmentation using quaternion-Garbor filters. In IEEE international conference on image processing (pp. 745–748).

    Google Scholar 

  • Jian, B., & Vemuri, B. (2007a). Multi-fiber reconstruction from diffusion MRI using mixture of wisharts and sparse deconvolution. Information Processing in Medical Imaging, 20, 384–395.

    Article  Google Scholar 

  • Jian, B., & Vemuri, B. C. (2007b). A unified computational framework for deconvolution to reconstruct multiple fibers from diffusion weighted MRI. IEEE Transactions on Medical Imaging, 26(11), 1464–1471.

    Article  Google Scholar 

  • Jian, B., Vemuri, B. C., Özarslan, E., Carney, P., & Mareci, T. (2007). A novel tensor distribution model for the diffusion-weighted MR signal. Neuroimage, 37(1), 164–176.

    Article  Google Scholar 

  • Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  • Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., & Yezzi, A. (1995). Gradient flows and geometric active contour models. In IEEE international conference on computer vision (pp. 810–815).

    Google Scholar 

  • Kimmel, R., Malladi, R., & Sochen, N. A. (2000). Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. International Journal of Computer Vision, 39(2), 111–129.

    Article  MATH  Google Scholar 

  • Kuipers, J. B. (2002). Quaternions and rotation sequences: a primer with applications to orbits, aerospace and virtual reality. Princeton: Princeton University Press.

    Google Scholar 

  • Lawson, C., & Hanson, R. J. (1974). Solving least squares problems. New York: Prentice-Hall.

    MATH  Google Scholar 

  • Lukac, R., Smolka, B., Martin, K., Plataniotis, K., & Venetsanopoulos, A. (2005). Vector filtering for color imaging. IEEE Signal Processing Magazine, 22(1), 74–86.

    Article  Google Scholar 

  • Malladi, R., Sethian, J. A., & Vemuri, B. C. (1995). Shape modeling with front propagation: a level set approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2), 158–175.

    Article  Google Scholar 

  • Mardia, K. V., & Jupp, P. E. (2000). Directional statistics, 2nd ed. New York: Wiley.

    MATH  Google Scholar 

  • Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In IEEE international conference on computer vision (Vol. 2, pp. 416–423).

    Google Scholar 

  • Moxey, C., Sangwine, S., & Ell, T. (2003). Hypercomplex correlation techniques for vector images. IEEE Transactions on Signal Processing, 51(7), 1941–1953.

    Article  MathSciNet  Google Scholar 

  • Mumford, D., & Shah, J. (1985). Boundary detection by minimizing functionals. In Proceedings of IEEE conference on computer vision and pattern recognition (pp. 22–26).

    Google Scholar 

  • Paragios, N., Chen, Y., & Faugeras, O. (2005). Handbook of mathematical models in computer vision. New York: Springer.

    MATH  Google Scholar 

  • Pei, S.-C., & Cheng, C.-M. (1996). A novel block truncation coding of color images by using quaternion-moment-preserving principle. IEEE International Symposium on Circuits and Systems, 2, 684–687.

    Google Scholar 

  • Prentice, M. J. (1986). Orientation statistics without parametric assumptions. Journal of the Royal Statistical Society. Series B (Methodological), 48(2), 214–222.

    MATH  MathSciNet  Google Scholar 

  • Rousson, M., & Paragios, N. (2008). Prior knowledge, level set representations & visual grouping. International Journal of Computer Vision, 76(3), 231–243.

    Article  Google Scholar 

  • Sangwine, S. (1996). Fourier transforms of colour images using quaternion or hypercomplex numbers. Electronic Letters, 32(21), 1979–1980.

    Article  Google Scholar 

  • Sangwine, S. (1998). Colour image edge detector based on quaternion convolution. Electronic Letters, 34(10), 969–971.

    Article  Google Scholar 

  • Sangwine, S., & Ell, T. A. (2000a). Colour image filters based on hypercomplex convolution. IEE Proceedings on Vision, Image and Signal Processing, 147(2), 89–93.

    Article  Google Scholar 

  • Sangwine, S., & Ell, T. A. (2000b). The discrete Fourier transform of a colour image. In J. M. Blackledge & M. J. Turner (Eds.), Image processing II: mathematical methods, algorithms and applications (pp. 430–441).

    Google Scholar 

  • Sapiro, G. (1997). Color snakes. Computer Vision and Image Understanding, 68(2), 247–253.

    Article  MathSciNet  Google Scholar 

  • Schoenemann, T., & Cremers, D. (2009). A combinatorial solution for model-based image segmentation and real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 99(1).

  • Sethuraman, B. A., Rajan, B. S., Member, S., & Shashidhar, V. (2003). Full-diversity, highrate space-time block codes from division algebras. IEEE Transactions on Information Theory, 49, 2596–2616.

    Article  Google Scholar 

  • Shi, L., & Funt, B. (2007). Quaternion color texture segmentation. Computer Vision and Image Understanding, 107(1–2), 88–96.

    Article  Google Scholar 

  • Shoemake, K. (1985). Animating rotation with quaternion curves. In SIGGRAPH’85: Proceedings of the 12th annual conference on computer graphics and interactive techniques (pp. 245–254). New York: ACM.

    Chapter  Google Scholar 

  • Subakan, Ö. N., & Vemuri, B. C. (2008). Image segmentation via convolution of a level-set function with a Rigaut kernel. In IEEE conference on computer vision and pattern recognition, Anchorage, Alaska.

  • Subakan, Ö. N., Jian, B., Vemuri, B. C., & Vallejos, C. E. (2007). Feature preserving image smoothing using a continuous mixture of tensors. In IEEE international conference on computer vision, Rio de Janeiro, Brazil.

  • Tang, B., Sapiro, G., & Caselles, V. (2001). Color image enhancement via chromaticity diffusion. IEEE Transactions on Image Processing, 10(5), 701–707.

    Article  MATH  Google Scholar 

  • Tsai, A., Yezzi, A. J., Wells, W. I., Tempany, C., Tucker, D., Fan,  A., Grimson, W., & Willsky, A. (2001). Model-based curve evolution technique for image segmentation. In IEEE conference on computer vision and pattern recognition (Vol. 1, pp. 463–468).

    Google Scholar 

  • Tschumperlé, D. (2006). Fast anisotropic smoothing of multi-valued images using curvature-preserving pde’s. International Journal of Computer Vision, 68(1), 65–82.

    Article  Google Scholar 

  • Tschumperlè, D. (2008). Greycstoration. Retrieved from http://cimg.sourceforge.net/greycstoration/, May 2008.

  • Weickert, J. (1997). Coherence-enhancing diffusion of colour images. In 7th national symposium on pattern recognition and image analysis (pp. 239–244).

    Google Scholar 

  • Zhu, S. C., & Yuille, A. (1996). Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(9), 884–900.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baba C. Vemuri.

Additional information

This research was in part funded by the NSF grant IOS-0920145.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subakan, Ö.N., Vemuri, B.C. A Quaternion Framework for Color Image Smoothing and Segmentation. Int J Comput Vis 91, 233–250 (2011). https://doi.org/10.1007/s11263-010-0388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0388-9

Keywords

Navigation