Skip to main content
Log in

ROSy+: 3D Object Pose Normalization Based on PCA and Reflective Object Symmetry with Application in 3D Object Retrieval

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A novel pose normalization method based on 3D object reflective symmetry is presented. It is a general purpose global pose normalization method; in this paper it is used to enhance the performance of a 3D object retrieval pipeline. Initially, the axis-aligned minimum bounding box of a rigid 3D object is modified by requiring that the 3D object is also in minimum angular difference with respect to the normals to the faces of its bounding box. To estimate the modified axis-aligned bounding box, a set of predefined planes of symmetry are used and a combined spatial and angular distance, between the 3D object and its symmetric object, is calculated. By minimizing the combined distance, the 3D object fits inside its modified axis-aligned bounding box and alignment with the coordinate system is achieved. The proposed method is incorporated in a hybrid scheme, that serves as the alignment method in a 3D object retrieval system. The effectiveness of the 3D object retrieval system, using the hybrid pose normalization scheme, is evaluated in terms of retrieval accuracy and demonstrated using both quantitative and qualitative measures via an extensive consistent evaluation on standard benchmarks. The results clearly show performance boost against current approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, H. K., Cheong, O., Park, C. D., Shin, C. S., & Vigneron, A. (2005). Maximizing the overlap of two planar convex sets under rigid motions. In SCG ’05: Proceedings of the twenty-first annual symposium on computational geometry (pp. 356–363). New York: ACM.

    Chapter  Google Scholar 

  • Ahn, H. K., Brass, P., & Shin, C. S. (2008). Maximum overlap and minimum convex hull of two convex polyhedra under translations. Computational Geometry, 40(2), 171–177.

    Article  MATH  MathSciNet  Google Scholar 

  • Ankerst, M., Kastenmüller, G., Kriegel, H. P., & Seidl, T. (1999). 3d shape histograms for similarity search and classification in spatial databases. In SSD ’99: Proceedings of the 6th international symposium on advances in spatial databases (pp. 207–226). London: Springer.

    Google Scholar 

  • Bustos, B., Keim, D., Saupe, D., Schreck, T., & Vranic, D. (2004). An experimental comparison of feature-based 3d retrieval methods. In International symposium on 3D data processing visualization and transmission (pp. 215–222).

    Chapter  Google Scholar 

  • Chan, C. K. & Tan, S. T. (2001). Determination of the minimum bounding box of an arbitrary solid: an iterative approach. Computers & Structures, 79(15), 1433–1449. http://www.sciencedirect.com/science/article/B6V28-43CT96W-5/2/52fce6656f09dd9535a6ef8861d9d9f2.

    Article  Google Scholar 

  • Chaouch, M., & Verroust-Blondet, A. (2007). 3d model retrieval based on depth line descriptor. In IEEE international conference on multimedia & expo (ICME’07).

    Google Scholar 

  • Chaouch, M., & Verroust-Blondet, A. (2009). Alignment of 3d models. Graphical Models, 71(2), 63–76. doi:10.1016/j.gmod.2008.12.006.

    Article  Google Scholar 

  • Chen, D. Y., & Ouhyoung, M. (2002). A 3d model alignment and retrieval system. In Proceedings of international computer symposium, workshop on multimedia technologies (pp. 1436–1443).

    Google Scholar 

  • Chen, D. Y., Shen, Y. T., Tian, X. P., & Ouhyoung, M. (2003). On visual similarity based 3d model retrieval. In Eurographics computer graphics forum (pp. 223–232).

    Google Scholar 

  • Cornea, N. D., Demirci, M. F., Silver, D., Shokoufandeh, A., Dickinson, S. J., & Kantor, P. B. (2005). 3d object retrieval using many-to-many matching of curve skeletons. In International Conference on shape modeling and applications (pp. 368–373). Berlin: Springer. doi:10.1109/SMI.2005.1.

    Google Scholar 

  • Daras, P., Zarpalas, D., Tzovaras, D., & Strintzis, M. G. (2006). Efficient 3-d model search and retrieval using generalized 3-d radon transforms. IEEE Transactions on Multimedia, 8(1), 101–114.

    Article  Google Scholar 

  • Elad, M., Tal, A., & Ar, S. (2001). Content based retrieval of vrml objects—an iterative and interactive approach. In Proceedings of the 6th Eurographics workshop on multimedia (pp. 97–108). Berlin: Springer.

    Google Scholar 

  • Fang, R., Godil, A., Li, X., & Wagan, A. (2008). A new shape benchmark for 3d object retrieval. In ISVC ’08: proceedings of the 4th international symposium on advances in visual computing (pp. 381–392). Berlin: Springer.

    Google Scholar 

  • Goldsmith, J., & Salmon, J. (1987). Automatic creation of object hierarchies for ray tracing. IEEE Computer Graphic and Applications, 7(5), 14–20.

    Article  Google Scholar 

  • Goldstein, H., & Poole, C. P. (2001). Classical mechanics. Reading: Addison Wesley. http://www.worldcat.org/isbn/0321188977.

    Google Scholar 

  • Gottschalk, S., Lin, M. C., & Manocha, D. (1996). Obbtree: a hierarchical structure for rapid interference detection. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on computer graphics and interactive techniques (pp. 171–180). New York: ACM. doi:10.1145/237170.237244.

    Chapter  Google Scholar 

  • Jarvelin, K., & Kekalainen, J. (2002). Cumulated gain-based evaluation of ir techniques. ACM Transactions on Information Systems, 20, 422–446.

    Article  Google Scholar 

  • Jayanti, S., Kalyanaraman, Y., Iyer, N., & Ramani, K. (2006). Developing an engineering shape benchmark for cad models. Computer-Aided Design, 38(9), 939–953. Shape Similarity Detection and Search for CAD/CAE Applications. http://www.sciencedirect.com/science/article/B6TYR-4KV4MRW-2/2/f871141051c71e73b0f373c574b7783b.

    Article  Google Scholar 

  • Kazhdan, M. (2007). An approximate and efficient method for optimal rotation alignment of 3d models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7), 1221–1229.

    Article  Google Scholar 

  • Kazhdan, M., Chazelle, B., Dobkin, D., Finkelstein, A., & Funkhouser, T. (2002). A reflective symmetry descriptor. In European conference on computer vision (ECCV) (pp. 642–656). Berlin: Springer.

    Google Scholar 

  • Kazhdan, M., Funkhouser, T., & Rusinkiewicz, S. (2003). Rotation invariant spherical harmonic representation of 3d shape descriptors. In SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on geometry processing (pp. 156–164). Aire-la-Ville: Eurographics Association.

    Google Scholar 

  • Kazhdan, M., Funkhouser, T., & Rusinkiewicz, S. (2004). Symmetry descriptors and 3d shape matching. In SGP ’04: Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on geometry processing (pp. 115–123). New York: ACM.

    Chapter  Google Scholar 

  • Kim, D. H., Park, I. K., Yun, I. D., & Lee, S. U. (2004). A new MPEG-7 standard: Perceptual 3-d shape descriptor. In PCM (2) (pp. 238–245).

    Google Scholar 

  • Lian, Z., Rosin, P., & Sun, X. (2009). Rectilinearity of 3d meshes. International Journal of Computer Vision. doi:10.1007/s11263-009-0295-0.

    Google Scholar 

  • Martinet, A., Soler, C., Holzschuch, N., & Sillion, F. X. (2006). Accurate detection of symmetries in 3d shapes. ACM Transactions on Graphics, 25(2), 439–464.

    Article  Google Scholar 

  • Minovic, P., Ishikawa, S., & Kato, K. (1993). Symmetry identification of a 3-d object represented by octree. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(5), 507–514.

    Article  Google Scholar 

  • Mitchell, E. (1965). Quaternion parameters in the simulation of a spinning rigid body. Body, Simulation, 18, 390–396.

    Article  Google Scholar 

  • Mitra, N. J., Guibas, L. J., & Pauly, M. (2006). Partial and approximate symmetry detection for 3d geometry. In SIGGRAPH ’06: ACM SIGGRAPH 2006 papers (pp. 560–568). New York: ACM.

    Chapter  Google Scholar 

  • Novotni, M., & Klein, R. (2004). Shape retrieval using 3d Zernike descriptors. Computer Aided Design, 36, 1047–1062.

    Article  Google Scholar 

  • Osada, R., Funkhouser, T., Chazelle, B., & Dobkin, D. (2002). Shape distributions. ACM Transactions on Graphics, 21(4), 807–832.

    Article  Google Scholar 

  • Papadakis, P., Pratikakis, I., Perantonis, S., & Theoharis, T. (2007). Efficient 3d shape matching and retrieval using a concrete radialized spherical projection representation. Pattern Recognition, 40(9), 2437–2452.

    Article  MATH  Google Scholar 

  • Papadakis, P., Pratikakis, I., Perantonis, S., & Theoharis, T. (2008). 3d object retrieval using an efficient and compact hybrid shape descriptor. In Eurographics workshop on 3D object retrieval (pp. 9–16).

    Google Scholar 

  • Papadakis, P., Pratikakis, I., Theoharis, T., & Perantonis, S. (2009). Panorama: A 3d shape descriptor based on panoramic views for unsupervised 3d object retrieval. International Journal of Computer Vision. doi:10.1007/s11263-009-0281-6.

    Google Scholar 

  • Paquet, E. (2000). Description of shape information for 2-d and 3-d objects. Signal Processing: Image Communication, 16(1–2), 103–122.

    Article  Google Scholar 

  • Podolak, J., Shilane, P., Golovinskiy, A., Rusinkiewicz, S., & Funkhouser, T. (2006). A planar-reflective symmetry transform for 3d shapes. In SIGGRAPH ’06: ACM SIGGRAPH 2006 papers (pp. 549–559). New York: ACM.

    Chapter  Google Scholar 

  • Ricard, J., Coeurjolly, D., & Baskurt, A. (2005). Generalizations of angular radial transform for 2d and 3d shape retrieval. Pattern Recognition Letters, 26(14), 2174–2186. doi:10.1016/j.patrec.2005.03.030.

    Article  Google Scholar 

  • Rustamov, R. M. (2007). Augmented symmetry transforms. In SMI ’07: Proceedings of the IEEE international conference on shape modeling and applications 2007 (pp. 13–20). Washington: IEEE Computer Society.

    Chapter  Google Scholar 

  • Shilane, P., Min, P., Kazhdan, M., & Funkhouser, T. (2004). The princeton shape benchmark. In International conference on shape modeling and applications (pp. 167–178).

    Google Scholar 

  • Sun, C., & Sherrah, J. (1997). 3d symmetry detection using the extended Gaussian image. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(2), 164–168.

    Article  Google Scholar 

  • Sundar, H., Silver, D., Gagvani, N., & Dickinson, S. (2003). Skeleton based shape matching and retrieval. In SMI ’03: Proceedings of the shape modeling international 2003 (p. 130). Washington: IEEE Computer Society.

    Chapter  Google Scholar 

  • Tangelder, J. W., & Veltkamp, R. C. (2008). A survey of content based 3d shape retrieval methods. Multimedia Tools and Applications, 39(3), 441–471.

    Article  Google Scholar 

  • Theodoridis, S., & Koutroumbas, K. (2006). Pattern Recognition (3rd ed.). San Diego: Academic Press.

    MATH  Google Scholar 

  • Theoharis, T., Papaioannou, G., Platis, N., & Patrikalakis, N. M. (2008). Graphics and visualization: Principles & algorithms. Natick: AK Peters.

    Google Scholar 

  • van den Bergen, G. (1997). Efficient collision detection of complex deformable models using aabb trees. Journal of Graphic Tools, 2(4), 1–13.

    MATH  Google Scholar 

  • Vranić, D. V. (2004). 3D model retrieval. PhD dissertation, University of Leipzig.

  • Vranić, D. V. (2005a). Content-based classification of 3d-models by capturing spatial characteristics. http://merkur01.inf.uni-konstanz.de/CCCC. Accessed on 28 July 2007.

  • Vranic, D. V. (2005b). Desire: a composite 3d-shape descriptor. In ICME (pp. 962–965). Berlin: Springer.

    Google Scholar 

  • Vranić, D. V., Saupe, D., & Richter, J. (2001). Tools for 3d-object retrieval: Karhunen-Loeve transform and spherical harmonics.

  • Xiang, P., Hua, C. Q., Gang, F. X., & Chuan, Z. B. (2007). Pose insensitive 3d retrieval by poisson shape histogram. In ICCS ’07: Proceedings of the 7th international conference on computational science, Part II (pp. 25–32). Berlin: Springer.

    Google Scholar 

  • Yu, Z., Zhang, S., Wong, H. S., & Zhang, J. (2007). A filter-refinement scheme for 3d model retrieval based on sorted extended Gaussian image histogram. In MLDM ’07: Proceedings of the 5th international conference on machine learning and data mining in pattern recognition (pp. 643–652). Berlin: Springer.

    Chapter  Google Scholar 

  • Zaharia, T., & Preteux, F. J. (2001). 3d-shape-based retrieval within the MPEG-7 framework. SPIE, 4304, 133–145. doi:10.1117/12.424969. http://link.aip.org/link/?PSI/4304/133/1.

    Article  Google Scholar 

  • Zaharia, T., & Prêteux, F. (2004). 3d versus 2d/3d shape descriptors: A comparative study. In SPIE conference on image processing: algorithms and systems (Vol. 2004)

    Google Scholar 

  • Zarpalas, D., Daras, P., Axenopoulos, A., Tzovaras, D., & Strintzis, M. G. (2007). 3d model search and retrieval using the spherical trace transform. EURASIP Journal on Applied Signal Processing, 2007(1), 207. doi:10.1155/2007/23912.

    Google Scholar 

  • Zhang, J., Siddiqi, K., Macrini, D., Shokoufandeh, A., & Dickinson, S. (2005). Retrieving articulated 3-d models using medial surfaces and their graph spectra. In Energy minimization methods in computer vision and pattern recognition (pp. 285–300).

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Sfikas.

Additional information

This work has been partially funded by the Greek State Scholarship Foundation (I.K.Y.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sfikas, K., Theoharis, T. & Pratikakis, I. ROSy+: 3D Object Pose Normalization Based on PCA and Reflective Object Symmetry with Application in 3D Object Retrieval. Int J Comput Vis 91, 262–279 (2011). https://doi.org/10.1007/s11263-010-0395-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-010-0395-x

Keywords

Navigation