Skip to main content
Log in

On Camera Calibration with Linear Programming and Loop Constraint Linearization

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

A technique for calibrating a network of perspective cameras based on their graph of trifocal tensors is presented. After estimating a set of reliable epipolar geometries, a parameterization of the graph of trifocal tensors is proposed in which each trifocal tensor is linearly encoded by a 4-vector. The strength of this parameterization is that the homographies relating two adjacent trifocal tensors, as well as the projection matrices depend linearly on the parameters. Two methods for estimating these parameters in a global way taking into account loops in the graph are developed. Both methods are based on sequential linear programming: the first relies on a locally linear approximation of the polynomials involved in the loop constraints whereas the second uses alternating minimization. Both methods have the advantage of being non-incremental and of uniformly distributing the error across all the cameras. Experiments carried out on several real data sets demonstrate the accuracy of the proposed approach and its efficiency in distributing errors over the whole set of cameras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, S., Snavely, N., Simon, I., Seitz, S. M., & Szeliski, R. (2009). Building Rome in a day. In ICCV.

    Google Scholar 

  • Avidan, S., & Shashua, A. (2001). Threading fundamental matrices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23, 73–77.

    Article  Google Scholar 

  • Bertsekas, D. (1999). Nonlinear programming (2nd edn.). Belmont: Athena Scientific.

    MATH  Google Scholar 

  • Bujnak, M., Kukelova, Z., & Pajdla, T. (2009). 3D reconstruction from image collections with a single known focal length. In ICCV (pp. 351–358).

    Google Scholar 

  • Chum, O., & Matas, J. (2005). Matching with PROSAC: progressive sample consensus. In CVPR (I: pp. 220–226).

    Google Scholar 

  • Chum, O., Werner, T., & Matas, J. (2005). Two-view geometry estimation unaffected by a dominant plane. In CVPR I: pp. 772–779.

    Google Scholar 

  • Cornelis, N., Cornelis, K., & Van Gool, L. (2006). Fast compact city modeling for navigation pre-visualization. In CVPR.

    Google Scholar 

  • Courchay, J., Dalalyan, A. S., Keriven, R., & Sturm, P. (2010). Exploiting loops in the graph of trifocal tensors for calibrating a network of cameras. In ECCV.

    Google Scholar 

  • Estrada, C., Neira, J., & Tardós, J. D. (2005). Hierarchical SLAM: real-time accurate mapping of large environments. IEEE Transactions on Robotics, 21, 588–596.

    Article  Google Scholar 

  • Faugeras, O., Luong, Q. T., & Papadopoulou, T. (2001). The geometry of multiple images: the laws that govern the formation of images of a scene and some of their applications. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Fitzgibbon, A. W., & Zisserman, A. (1998). Automatic camera recovery for closed or open image sequences. In ECCV (pp. 311–326).

    Google Scholar 

  • Furukawa, Y., & Ponce, J. (2009). Accurate camera calibration from multi-view stereo and bundle adjustment. International Journal of Computer Vision, 84, 257–268.

    Article  Google Scholar 

  • Gherardi, R., Farenzena, M., & Fusiello, A. (2010). Improving the efficiency of hierarchical structure-and-motion. In CVPR (pp. 1594–1600).

    Google Scholar 

  • Golub, G. H., & Van Loan, C. F. (1996). Matrix computations. 3rd edn. Johns Hopkins studies in the mathematical sciences. Baltimore: Johns Hopkins University Press.

    MATH  Google Scholar 

  • Govindu, M. (2006). Robustness in motion averaging. In ACCV (pp. 457–466).

    Google Scholar 

  • Hartley, R., & Zisserman, A. (2003). Multiple view geometry in computer vision (2nd edn.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Havlena, M., Torii, A., Knopp, J., & Pajdla, T. (2009). Randomized structure from motion based on atomic 3d models from camera triplets. In CVPR.

    Google Scholar 

  • Jacobs, D. (1997). Linear fitting with missing data: applications to structure-from-motion and to characterizing intensity images. In CVPR (p. 206).

    Google Scholar 

  • Klopschitz, M., Zach, C., Irschara, A., & Schmalstieg, D. (2008). Generalized detection and merging of loop closures for video sequences. In 3DPVT.

    Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. IJCV, 60, 91–110.

    Article  Google Scholar 

  • Martinec, D., & Pajdla, T. (2005). 3D reconstruction by fitting low-rank matrices with missing data. In CVPR (pp. 198–205).

    Google Scholar 

  • Martinec, D., & Pajdla, T. (2007). Robust rotation and translation estimation in multiview reconstruction. In CVPR.

    Google Scholar 

  • Maybank, S. J., & Shashua, A. (1998). Ambiguity in reconstruction from images of six points. In ICCV (pp. 703–708).

    Google Scholar 

  • Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., & Sayd, P. (2009). Generic and real-time sfm using local bundle adjustment. Image and Vision Computing, 27, 1178–1193.

    Article  Google Scholar 

  • Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., & Koch, R. (2004). Visual modeling with a hand-held camera. International Journal of Computer Vision, 59, 207–232.

    Article  Google Scholar 

  • Ponce, J., McHenry, K., Papadopoulo, T., Teillaud, M., & Triggs, B. (2005). On the absolute quadratic complex and its application to autocalibration. In CVPR (pp. 780–787). .

    Google Scholar 

  • Quan, L. (1995). Invariants of six points and projective reconstruction from three uncalibrated images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17, 34–46.

    Article  Google Scholar 

  • Sattler, T., Leibe, B., & Kobbelt, L. (2009). Scramsac: improving ransac‘s efficiency with a spatial consistency filter. In ICCV.

    Google Scholar 

  • Scaramuzza, D., Fraundorfer, F., & Pollefeys, M. (2010). Closing the loop in appearance-guided omnidirectional visual odometry by using vocabulary trees. Robotics and Autonomous Systems, 58, 820–827.

    Article  Google Scholar 

  • Schaffalitzky, F., Zisserman, A., Hartley, R. I., & Torr, P. H. S. (2000). A six point solution for structure and motion. In ECCV, London, UK (pp. 632–648). Berlin: Springer.

    Google Scholar 

  • Sinha, S. N., Pollefeys, M., & McMillan, L. (2004). Camera network calibration from dynamic silhouettes. In CVPR.

    Google Scholar 

  • Snavely, N., Seitz, S. M., & Szeliski, R. (2006). Photo tourism: exploring photo collections in 3D. New York: ACM Press.

    Google Scholar 

  • Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from Internet photo collections. International Journal of Computer Vision, 80, 189–210.

    Article  Google Scholar 

  • Snavely, N., Seitz, S., & Szeliski, R. (2008). Skeletal sets for efficient structure from motion. In CVPR (pp. 1–8).

    Google Scholar 

  • Strecha, C., von Hansen, W., Van Gool, L., Fua, P., & Thoennessen, U. (2008). On benchmarking camera calibration and multi-view stereo for high resolution imagery. In CVPR.

    Google Scholar 

  • Sturm, P., & Triggs, B. (1996). A factorization based algorithm for multi-image projective structure and motion. In ECCV (pp. 709–720).

    Google Scholar 

  • Tardif, J., Pavlidis, Y., & Daniilidis, K. (2008). Monocular visual odometry in urban environments using an omnidirectional camera. In IROS (pp. 2531–2538).

    Google Scholar 

  • Tomasi, C., & Kanade, T. (1992). Shape and motion from image streams under orthography: a factorization method. International Journal of Computer Vision, 9, 137–154.

    Article  Google Scholar 

  • Torii, A., Havlena, M., & Pajdla, T. (2009). From Google street view to 3d city models. In OMNIVIS.

    Google Scholar 

  • Torr, P. H. S. (1997). An assessment of information criteria for motion model selection. In CVPR (pp. 47–53).

    Google Scholar 

  • Triggs, B., McLauchlan, P., Hartley, R., & Fitzgibbon, A. (1999). Bundle adjustment—a modern synthesis. In Workshop on vision algorithms (pp. 298–372).

    Google Scholar 

  • Vu, H., Keriven, R., Labatut, P., & Pons, J. P. (2009). Towards high-resolution large-scale multi-view stereo. In CVPR.

    Google Scholar 

  • Zach, C., Klopschitz, M., & Pollefeys, M. (2010). Disambiguating visual relations using loop constraints. In CVPR (pp. 1426–1433).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Courchay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Courchay, J., Dalalyan, A.S., Keriven, R. et al. On Camera Calibration with Linear Programming and Loop Constraint Linearization. Int J Comput Vis 97, 71–90 (2012). https://doi.org/10.1007/s11263-011-0483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-011-0483-6

Keywords

Navigation