Skip to main content
Log in

3D Geometric Scale Variability in Range Images: Features and Descriptors

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Despite their ubiquitous presence, little has been investigated about the scale variability—the relative variations in the spatial extents of local structures—of 3D geometric data. In this paper we present a comprehensive framework for exploiting this 3D geometric scale variability in range images that provides rich information for characterizing the overall geometry. We derive a sound scale-space representation, which we refer to as the geometric scale-space, that faithfully encodes the scale variability of the surface geometry, and derive novel detectors to extract prominent features and identify their natural scales. The result is a hierarchical set of features of different scales which we refer to as scale-dependent geometric features. We then derive novel local shape descriptors that represent the surface structures that give rise to those features by carving out and encoding the local surface that fall within the support regions of the features. This leads to scale-dependent or scale-invariant local shape descriptors that convey significant discriminative information of the object geometry. We demonstrate the effectiveness of geometric scale analysis on range images, and show that it enables novel applications, in particular, fully automatic registration of multiple objects from a mixed set of range images and 3D object recognition in highly cluttered range image scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akagunduz, E., & Ulusoy, I. (2007). Extraction of 3D transform and scale invariant patches from range scans. In IEEE int’l conf. on computer vision and pattern recognition (pp. 1–8).

    Chapter  Google Scholar 

  • Bariya, P., & Nishino, K. (2010). Scale-hierarchical 3D object recognition in cluttered scenes. In IEEE conf. on computer vision and pattern recognition.

    Google Scholar 

  • Brady, M., Ponce, J., Yuille, A., & Asada, H. (1985). Describing surfaces (Technical Report AIM-822). MIT Aritificial Intelligence Laboratory Memo.

  • Bro, R., Acar, E., & Kolda, T. G. (2008). Resolving the sign ambiguity in the singular value decomposition. Journal of Chemometrics 22, 135–140.

    Article  Google Scholar 

  • Carmo, M. P. D. (1976). Differential geometry of curves and surfaces. Prentice Hall: New York.

    MATH  Google Scholar 

  • Chang, K. C., Ding, W., & Ye, R. (1992). Finite-time blow-up of the heat flow of harmonic maps from surfaces. Journal of Differential Geometry, 36(2), 507–515.

    MathSciNet  MATH  Google Scholar 

  • Chen, C., Hung, Y., & Cheng, J. (1999). RANSAC-based DARCES: a new approach to fast automatic registration of partially overlapping range images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(11), 1229–1234.

    Article  Google Scholar 

  • Chua, C., & Jarvis, R. (1997). Point signatures: a new representation for 3D object recognition. International Journal of Computer Vision, 25(1), 63–85.

    Article  Google Scholar 

  • Cohen, R., Hardt, R., Kinderlehrer, D., Lin, S., & Luskin, M. (1987). Minimum energy configurations for liquid crystals: computational results (pp. 99–121). New York: Springer.

    Google Scholar 

  • Coron, J. M. (1990). Nonuniqueness for the heat flow of harmonic maps. Annales de l’Institut Heri Poincaré, 7(4), 335–344.

    MathSciNet  MATH  Google Scholar 

  • Dinh, H. Q., & Kropac, S. (2006). Multi-resolution spin-images. In IEEE int’l conf. on computer vision and pattern recognition, Washington, DC, USA (pp. 863–870). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  • Flynn, P., & Jain, A. (1991). Bonsai: 3D object recognition using constrained search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(10), 1066–1075.

    Article  Google Scholar 

  • Freire, A. (1995). Uniqueness for the harmonic map flow in two dimensions. Calculus of Variations and Partial Differential Equations, 3(1), 95–105.

    Article  MathSciNet  MATH  Google Scholar 

  • Frome, A., Huber, D., Kolluri, R., Bulow, T., & Malik, J. (2004). Recognizing objects in range data using regional point descriptors. In European conf. on computer vision.

    Google Scholar 

  • Gelfand, N., Mitra, N., Guibas, L., & Pottmann, H. (2005). Robust global registration. In Symposium on geometry processing.

    Google Scholar 

  • Grimson, W. (1988). The combinatorics of object recognition in cluttered environments using constrained search. In IEEE int’l conf on computer vision (pp. 218–227).

    Google Scholar 

  • Grimson, W., Lozano-Perez, T., & Huttenlocher, D. (1990). Object recognition by computer: the role of geometric constraints. Cambridge: MIT Press.

    Google Scholar 

  • ter Haar, F., & Veltkamp, R. (2007). Automatic multiview quadruple alignment of unordered range scans. In IEEE shape modeling and applications, Washington, DC, USA (pp. 137–146). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Hardt, R. (1991). Singularities of harmonic maps. Bulletin of the American Mathematical Society, 34, 15–34.

    Article  MathSciNet  Google Scholar 

  • Huber, D., & Hebert, M. (2003). Fully automatic registration of multiple 3d data sets. Image and Vision Computing, 21(7), 637–650.

    Article  Google Scholar 

  • Johnson, A. (1997). Spin-images: a representation for 3-D surface matching. Ph.D. thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

  • Johnson, A., & Hebert, M. (1999). Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 433–449.

    Article  Google Scholar 

  • Johnson, A., Carmichael, O., Huber, D., & Hebert, M. (1998). Toward a general 3-D matching engine: multiple models, complex scenes, and efficient data filtering. In Proceedings of the 1998 image understanding workshop (IUW) (pp. 1097–1107).

    Google Scholar 

  • Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. In Eurographics symp. on geometry processing, Eurographics Association, Aire-la-Ville, Switzerland (pp. 61–70).

    Google Scholar 

  • Kimmel, R. (1997). Intrinsic scale space for images on surfaces: the geodesic curvature flow. In Scale-space theory in computer vision (pp. 212–223).

    Chapter  Google Scholar 

  • Kimmel, R., & Sethian, JA (1998). Computing geodesic paths on manifolds. In Proceedings of national academy of sciences USA (pp. 8431–8435).

    Google Scholar 

  • Koenderink, J. (1984). The structure of images. Biological Cybernetics, 50, 363–370.

    Article  MathSciNet  MATH  Google Scholar 

  • Lab QURCV (2009). Queen’s range image and 3-D model database. http://rcvlab.ece.queensu.ca/~qridb/

  • Lalonde, J., Unnikrishnan, R., Vandapel, N., & Hebert, M. (2005). Scale selection for classification of point-sampled 3-D surfaces. In Int’l conf. on 3-D digital imaging and modeling.

    Google Scholar 

  • Li, X., & Guskov, I. (2005). Multi-scale features for approximate alignment of point-based surfaces. In Symposium on geometry processing.

    Google Scholar 

  • Li, X., & Guskov, I. (2007). 3D object recognition from range images using pyramid matching. In IEEE int’l conf. on computer vision workshop on 3D representation for recognition (pp. 1–6).

    Google Scholar 

  • Lindeberg, T. (1994). Scale-space theory in computer vision. Dordrecht: Kluwer Academics.

    Google Scholar 

  • Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30, 77–116.

    Google Scholar 

  • Makadia, A., Patterson, A., & Daniilidis, K. (2006). Fully automatic registration of 3D point clouds. In IEEE int’l conf. on computer vision and pattern recognition, Washington, DC, USA (pp. 1297–1304). Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • MeshLab (2010). http://meshlab.sourceforge.net/.

  • Mian, A., Bennamoun, M., & Owens, R. (2004). From unordered range images to 3D models: a fully automatic multiview correspondence algorithm. In Theory and practice of computer graphics, Washington, DC, USA (pp. 162–166). Los Alamitos: IEEE Comput. Soc.

    Chapter  Google Scholar 

  • Mian, A., Bennamoun, M., & Owens, R. (2006). Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(10), 1584–1601.

    Article  Google Scholar 

  • Mokhtarian, F., Khalili, N., & Yuen, P. (2001). Curvature computation on free-form 3-D meshes at multiple scales. Computer Vision and Image Understanding, 83, 118–139.

    Article  MATH  Google Scholar 

  • Morita, S., Kawashima, T., & Aoki, Y. (1992). Hierarchical shape recognition based on 3D multiresolution analysis. In European conf. on computer vision.

    Google Scholar 

  • Nishino, K., & Ikeuchi, K. (2002). Robust simultaneous registration of multiple range images. In Proc. of fifth Asian conference on computer vision, ACCV 02 (pp. 454–461).

    Google Scholar 

  • Novatnack, J., & Nishino, K. (2007). Scale-dependent 3D geometric features. In IEEE int’l conf. on computer vision.

    Google Scholar 

  • Novatnack, J., & Nishino, K. (2008). Scale-dependent/invariant local 3D shape descriptors for fully automatic registration of multiple sets of range images. In European conference on computer vision (pp. 440–453).

    Google Scholar 

  • Pauly, M., Kobbelt, L. P., & Gross, M. (2006). Point-based multi-scale surface representation. ACM Transactions on Graphics, 25(2), 177–193.

    Article  Google Scholar 

  • Ponce, J., & Brady, M. (1985). Toward a surface primal sketch. The International Journal of Robotics Research, 2, 420–425.

    Google Scholar 

  • Schlattmann, M. (2006). Intrinsic features on surfaces. In Central European seminar on computer graphics (pp. 169–176).

    Google Scholar 

  • Skelly, L. J., & Sclaroff, S. (2007). Improved feature descriptors for 3-d surface matching. In: Proc. SPIE conf. on two- and three-dimensional methods for inspection and metrology (Vol. 6762, pp. 63–85).

    Google Scholar 

  • Stein, F., & Medioni, G. (1992). Structural indexing: efficient 3-D object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 125–145.

    Article  Google Scholar 

  • Struwe, M. (1985). On the evolution of harmonic mappings of riemannian surfaces. Commentarii Mathematici Helvetici, 60(1), 558–581.

    Article  MathSciNet  MATH  Google Scholar 

  • Sun, Y., & Abidi, M. (2001). Surface matching by 3D point’s fingerprint. In IEEE int.’l conf. on computer vision (Vol. 2, pp. 263–269).

    Google Scholar 

  • Taati, B. (2009). Generation and optimization of local shape descriptors for point matching in 3-D surfaces. Ph.D. thesis, Queen’s University, Ontario, Canada.

  • Taati, B., Bondy, M., Jasiobedzki, P., & Greenspan, M. (2007). Variable dimensional local shape descriptors for object recognition in range data. In IEEE int’l conf. on computer vision workshop on 3D representation for recognition. Los Alamitos: IEEE Comput. Soc.

    Google Scholar 

  • Tang, B., Sapiro, G., & Caselles, V. (2000). Diffusion of general data on non-flat manifolds via harmonic maps theory: the direction diffusion case. International Journal of Computer Vision, 36(2), 149–161.

    Article  Google Scholar 

  • Taubin, G. (1995). A signal processing approach to fair surface design. In ACM SIGGRAPH (pp. 351–358).

    Google Scholar 

  • Umeyama, S. (1991). Least-squares estimation of transformation parameters between two point patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(4), 376–380.

    Article  Google Scholar 

  • Unnikrishnan, R., & Hebert, M. (2008). Multi-scale interest regions from unorganized point clouds. In IEEE int’l conf. on computer vision and pattern recognition: workshop on search in 3D (S3D).

    Google Scholar 

  • Weickert, J., Ishikawa, S., & Imiya, A. (1999). Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision, 10(3), 237–252.

    Article  MathSciNet  MATH  Google Scholar 

  • Witkin, A. (1984). Scale-space filtering: a new approach to multi-scale description. In IEEE int’l conf. on acoustics, speech, and signal processing (pp. 150–153).

    Google Scholar 

  • Zhang, D., & Hebert, M. (1999). Harmonic maps and their applications in surface matching. In IEEE int’l conf. on computer vision and pattern recognition (Vol. 2).

    Google Scholar 

  • Zou, G., Hua, J., Lai, Z., Gu, X., & Dong, M. (2009). Intrinsic geometric scale space by shape diffusion. IEEE Transactions on Visualization and Computer Graphics, 15, 1193–1200.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ko Nishino.

Additional information

This material is based in part upon work supported by the National Science Foundation under CAREER award IIS-0746717 and IIS- 0803670. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bariya, P., Novatnack, J., Schwartz, G. et al. 3D Geometric Scale Variability in Range Images: Features and Descriptors. Int J Comput Vis 99, 232–255 (2012). https://doi.org/10.1007/s11263-012-0526-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-012-0526-7

Keywords

Navigation