Skip to main content
Log in

Beyond Independence: An Extension of the A Contrario Decision Procedure

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The a contrario approach is a principled method for making algorithmic decisions that has been applied successfully to many tasks in image analysis. The method is based on a background model (or null hypothesis) for the image. This model relies on independence assumptions and characterizes images in which no detection should be made. It is often image dependent, relying on statistics gathered from the image, and therefore adaptive. In this paper we propose a generalization for background models which relaxes the independence assumption and instead uses image dependent second order properties. The second order properties are accounted for thanks to graphical models. The modified a contrario technique is applied to two tasks: line segment detection and part-based object detection, and its advantages are demonstrated. In particular, we show that the proposed method enables reasonably accurate prediction of the false detection rate with no need for training data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. http://www.robots.ox.ac.uk/~vgg/data/data-cats.html.

  2. http://www-cvr.ai.uiuc.edu/ponce_grp/data/.

References

  • Chow, C. K., & Liu, C. N. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14, 462–467.

    Article  MATH  Google Scholar 

  • Cormen, T. H., Leiserson, C. E., & Rivest, R. L. (1990). Introduction to algorithms. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In Proc. IEEE conf. comp. vision patt. recog. (pp. 886–893).

    Google Scholar 

  • Desolneux, A., Moisan, L., & Morel, J. M. (2000). Meaningful alignments. International Journal of Computer Vision, 40(1), 7–23.

    Article  MATH  Google Scholar 

  • Desolneux, A., Moisan, L., & Morel, J. M. (2001). Edge detection by Helmholtz principle. Journal of Mathematical Imaging and Vision, 14(3), 271–284.

    Article  MATH  Google Scholar 

  • Desolneux, A., Moisan, L., & Morel, J. M. (2008). From gestalt theory to image analysis. Berlin: Springer.

    Book  Google Scholar 

  • Fergus, R., Perona, P., & Zisserman, A. (2007). Weakly supervised scale-invariant learning of models for visual recognition. International Journal of Computer Vision, 71(3), 273–303.

    Article  Google Scholar 

  • Flenner, A., & Hewer, G. A. (2011). Helmholtz principle approach to parameter free change detection and coherent motion using exchangeable random variables. SIAM Journal on Imaging Sciences, 4(1), 243–276.

    Article  MathSciNet  MATH  Google Scholar 

  • Galerne, B., Gousseau, Y., & Morel, J.-M. (2010). Random phase textures: theory and synthesis. IEEE Transactions on Image Processing, 20(1), 257–267.

    Article  MathSciNet  Google Scholar 

  • Gousseau, Y., & Roueff, F. (2007). Modeling occlusion and scaling in natural images. Multiscale Modeling & Simulation. SIAM Interdisciplinary Journal, 6(1), 105–134.

    Article  MathSciNet  MATH  Google Scholar 

  • Grimmett, G., & Stirzaker, D. (2001). Probability and random processes (3rd ed.). Cambridge: Oxford University Press.

    Google Scholar 

  • Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., & Randall, G. (2008). On straight line segment detection. Journal of Mathematical Imaging and Vision, 32, 313–347.

    Article  MathSciNet  Google Scholar 

  • Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., & Randall, G. (2010). Lsd: A fast line segment detector with a false detection control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32, 722–732.

    Article  Google Scholar 

  • Grosjean, B., & Moisan, L. (2009). A-contrario detectability of spots in textured backgrounds. Journal of Mathematical Imaging and Vision, 33(3), 313–337.

    Article  MathSciNet  Google Scholar 

  • Konishi, S., Yuille, A. L., Coughlan, J. M., & Zhu, S. C. (2003). Statistical edge detection: learning and evaluating edge cues. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(1), 57–74.

    Article  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Moisan, L., & Stival, B. (2004). A probabilistic criterion to detect rigid point matches between two images and estimate the fundamental matrix. International Journal of Computer Vision, 57(3), 201–218.

    Article  Google Scholar 

  • Muse, P., Sur, F., Cao, F., Gousseau, Y., & Morel, J. M. (2006). An a contrario decision method for shape element recognition. International Journal of Computer Vision, 69(3), 295–315.

    Article  Google Scholar 

  • Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. San Mateo: Morgan Kaufman.

    Google Scholar 

  • Rabin, J., Delon, J., & Gousseau, Y. (2009). A statistical approach to the matching of local features. SIAM Journal on Imaging Sciences, 2(3), 931–958.

    Article  MathSciNet  MATH  Google Scholar 

  • Rajashekar, U., Bovik, A. C., & Cormack, L. K. (2006). Visual search in noise: revealing the influence of structural cues by gaze-contingent classification image analysis. Journal of Vision, 6(4), 379–386.

    Article  Google Scholar 

  • Ruderman, D. L. (1994). The statistics of natural images. Network: Computation in Neural Systems, 5, 517–548.

    Article  MATH  Google Scholar 

  • Sabater, N., Morel, J. M., & Almansa, A. (2012). Reliable matches in stereovision. doi:10.1109/TPAMI.2011.207

    MATH  Google Scholar 

  • Sivic, J., Russell, B. C., Efros, A. A., Zisserman, A., & Freeman, W. T. (2005). Discovering objects and their location in images. In Proc. int. conf. comp. vision.

    Google Scholar 

  • Van Trees, H. L. (1965). Detection, estimation, and modulation theory, part I. New York: Wiley.

    Google Scholar 

  • Vidal-Naquet, M., & Ullman, S. (2003). Object recognition with informative features and linear classification. In ICCV03 (pp. 281–288).

    Google Scholar 

  • Weber, M., Welling, M., & Perona, P. (2000). Unsupervised learning of models for recognition. In ECCV00 (pp. 18–32).

    Google Scholar 

  • Zhang, J., Marszalek, M., Lazebnik, S., & Schmid, C. (2007). Local features and kernels for classification of texture and object categories: a comprehensive study. International Journal of Computer Vision, 73(2), 213–238.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artiom Myaskouvskey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myaskouvskey, A., Gousseau, Y. & Lindenbaum, M. Beyond Independence: An Extension of the A Contrario Decision Procedure. Int J Comput Vis 101, 22–44 (2013). https://doi.org/10.1007/s11263-012-0543-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-012-0543-6

Keywords

Navigation