Skip to main content
Log in

Object-Colour Manifold

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Colorimetry can predict which lights will look alike. Such lights are called metameric. Two lights are metameric if they have the same tri-stimulus values. Using the tri-stimulus values as Cartesian coordinates one can represent light colours as points in a 3D space (referred to as the colorimetric space). All the light colours make a tri-dimensional manifold which can be represented as a circular cone in the colorimetric space. Furthermore, colorimetry also claims that reflecting objects illuminated by the same light will look alike as soon as they reflect metameric lights. All the object colours are then represented as a closed solid inscribed in the light colour cone provided the illumination is fixed. However, as argued in this article, the reflected light metamerism does not guarantee that the reflecting objects will look identical (referred to as colour equivalence), especially when there are multiple illuminants. Moreover, colour equivalence cannot be derived from metamerism. The colour of a reflecting object under various illuminations is shown to be specified by six numbers (referred to as its six-stimulus values) that can be established by experiment. Using the six-stimulus values one can represent the colours of all the reflecting objects illuminated by various illuminants as a cone (without a vertex) through a 5D ball.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Strictly speaking, light cannot be black. The absence of light is experienced as darkness which is different from the experience of black (Volbrecht and Kliegl 1998).

  2. Furthermore, as shown elsewhere there simply cannot be, out of principle, a human observer with the CIE 1931 colour matching functions (Logvinenko 2009b).

  3. It should be noted that there is a natural limit for the spectral bandwidth of an illuminant exceeding which object-colour perception as such no longer occurs. For example, when a multi-coloured paper design (a so-called Mondrian) is illuminated by a narrow-band light-emitting diode, the paper is perceived as achromatic (of different shades of grey) through a “wash” of colour that can be described as the media (atmosphere) colour rather than surface colour (Schirillo, personal communication). Therefore, a monochromatic light cannot be considered as an illuminant for real objects not only for theoretical reasons, but simply because the monochromatic light would not secure any object-colour perception.

  4. In contrast to an asymmetric colour matching which involves only manipulating the object’s reflectance, in an object-colour matching experiment both the object’s reflectance and the object’s illumination are adjusted by observers to obtain colour equivalence.

  5. Of course, it is not easy to manipulate the object reflectance systematically. Furthermore, the rectangle object colour atlas \(\mathcal{A}_{x}\) cannot be implemented as real reflecting objects (e.g., papers). Still, one can use papers that approximate the rectangle reflectance functions.

  6. As only positive spectral power distributions are taken into consideration, the weights q n and q cannot be both zero in (4).

  7. The visible spectrum circle results from identifying the ends of the visible spectrum interval.

  8. Experimental evidence supporting the distinction between material and lighting hues can be found in Tokunaga and Logvinenko (2010a).

  9. A solution might exist if one imposes some additional constraints on the object set. Specifically, there is a solution if consideration is restricted to object sets that are three-dimensional. Such a constraint is explicitly made in the linear models (Maloney and Wandell 1986; Maloney 2003). Sometimes, this constraint is implicitly included. For example, Forsyth assumes no mismatching of metamers (Forsyth 1990, p. 7), however, this can be the case only when the dimensionality of the object set is not more than the number of photoreceptors (or sensors).

  10. If one counts each material (respectively, lighting component) as three unknowns, then the system (32) comprises 3N equations with 6N unknowns.

References

  • Arend, L. (1994). Surface colours, illumination, and surface geometry: Intrinsic-image models of human color perception. In A. Gilchrist (Ed.), Lightness, brightness, and transparency (pp. 159–213). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Barnard, K., Funt, B., & Cardei, V. (2002). A comparison of computational color constancy algorithms, part one; theory and experiments with synthetic data. IEEE Transactions on Image Processing, 11, 972–983.

    Article  Google Scholar 

  • Brainard, D. H. (2004). Color constancy. In L. Chalupa & J. Werner (Eds.), The visual neurosciences (pp. 948–961). Cambridge: MIT Press.

    Google Scholar 

  • Brainard, D. H. (2009). Color constancy. In B. Goldstein (Ed.), The Sage encyclopedia of perception (pp. 253–257). Los Angeles: SAGE.

    Google Scholar 

  • Brainard, D. H., & Stockman, A. (2010). Colorimetry. In M. Bass (Ed.), Vision and vision optics. OSA handbook of optics, vol. III. (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Brainard, D. H., Brunt, W. A., & Speigle, J. M. (1997). Color constancy in the nearly natural image. I. Asymmetric matches. Journal of the Optical Society of America A, Online, 14, 2091–2110.

    Article  Google Scholar 

  • Craven, B. J., & Foster, D. H. (1992). An operational approach to colour constancy. Vision Research, 32, 1359–1366.

    Article  Google Scholar 

  • Ebner, M. (2007). Color constancy. Chichester: Wiley.

    Google Scholar 

  • Fairchild, M. D. (2005). Wiley publication in imaging science and technology. Color appearance models (2nd edn.). Chichester: Wiley.

    Google Scholar 

  • Forsyth, D. A. (1990). A novel algorithm for colour constancy. International Journal of Computer Vision, 5, 5–36.

    Article  Google Scholar 

  • Foster, D. H. (2011). Color constancy. Vision Research, 51, 674–700.

    Article  Google Scholar 

  • Foster, D. H., & Nascimento, S. M. C. (1994). Relational colour constancy from invariant cone-excitation ratios. Proceedings of the Royal Society of London Series B, Biological Sciences, 257, 115–121.

    Article  Google Scholar 

  • Foster, D. H., Nascimento, S. M. C., Amano, K., Arend, L., Linnell, K. J., Nieves, J. L., Plet, S., & Foster, J. S. (2001). Parallel detection of violations of color constancy. Proceedings of the National Academy of Sciences of the United States of America, 98(14), 8151–8156.

    Article  Google Scholar 

  • Gelb, A. (1929). Die Farbenkonstanz der Sehdinge. In A. Bethe (Ed.), Handbuch der normalen und patologischen physiologie (pp. 594–678). Berlin: Springer.

    Chapter  Google Scholar 

  • Gijsenij, A., Gevers, T., & van de Weijer, J. (2010). Computational color constancy: survey and experiments. IEEE Transactions on Image Processing, 19, 2475–2489.

    Google Scholar 

  • Gilchrist, A. (1977). Perceived lightness depends on perceived spatial arrangement. Science, 195, 185–187.

    Article  Google Scholar 

  • Gilchrist, A. (2006). Seeing black and white. New York: Oxford University Press.

    Book  Google Scholar 

  • Godau, C., & Funt, B. (2010). XYZ to ADL: calculating Logvinenko’s object color coordinates. In Proc. eighteenth IS&T color imaging conference, San Antonio, Nov. 2010 (pp. 334–339). Springfield: Society for Imaging Science and Technology.

    Google Scholar 

  • Godau, C., & Funt, B. (2012). The Logvinenko object color atlas in practice. Color Research and Application, 37, 117–125.

    Article  Google Scholar 

  • Hordley, S. D. (2006). Scene illuminant estimation: past, present, and future. Color Research and Application, 31, 303–314.

    Article  Google Scholar 

  • Hurlbert, A. C. (1998). Computational models of color constancy. In V. Walsh & J. J. Kulikowski (Eds.), Perceptual constancy: why things look as they do (pp. 283–322). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jameson, D., & Hurvich, L. M. (1989). Essay concerning color constancy. Annual Review of Psychology, 40, 1–22.

    Article  Google Scholar 

  • Kaiser, P. K., & Boynton, R. M. (1996). Human color vision (2nd edn.). Washington: Optical Society of America.

    Google Scholar 

  • Katz, D. (1999). The world of colour. London: Routledge.

    Google Scholar 

  • Kingdom, F. A. A. (2011). Lightness, brightness and transparency: a quarter century of new ideas, captivating demonstrations and unrelenting controversy. Vision Research, 51, 652–673.

    Article  Google Scholar 

  • Koenderink, J. J. (2010). Color for the sciences. Cambridge, London: The MIT Press.

    Google Scholar 

  • Koffka, K. (1935). Principles of gestalt psychology. New York: Harcourt, Brace.

    Google Scholar 

  • Krantz, D. H. (1968). A theory of context effects based on cross-context matching. Journal of Mathematical Psychology, 5, 1–48.

    Article  MATH  MathSciNet  Google Scholar 

  • Krantz, D. H. (1975). Color measurement and color theory: I. Representation theorem for Grassmann structures. Journal of Mathematical Psychology, 12, 283–303.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuehni, R. G., & Schwarz, A. (2008). Color ordered: a survey of color order systems from antiquity to the present. New York: Oxford University Press.

    Book  Google Scholar 

  • Kulikowski, J. J., & Vaitkevicius, H. (1997). Colour constancy as a function of hue. Acta Psychologica, 97, 25–35.

    Article  Google Scholar 

  • Land, E. H. (1977). The Retinex theory of color vision. Scientific American, 237, 108–128.

    Article  MathSciNet  Google Scholar 

  • Logvinenko, A. D. (1997). Invariant relationship between achromatic colour, apparent illumination, and shape of surface: implications for the colour perception theories. In C. M. Dickinson, I. J. Murray, & D. Carden (Eds.), John Dalton’s colour vision legacy (pp. 591–597). London: Taylor & Francis.

    Google Scholar 

  • Logvinenko, A. D. (2005). Does luminance contrast determine lightness? Spatial Vision, 18, 337–346.

    Article  Google Scholar 

  • Logvinenko, A. D. (2009a). A new colour rendering index. In D. Smith, P. Green-Armytage, M. A. Pope, & N. Harkness (Eds.), Proceedings of the 11th congress of the international colour association (AIC 2009). Sydney: Colour Society of Australia, CD.

    Google Scholar 

  • Logvinenko, A. D. (2009b). An object-colour space. Journal of Vision, 9(11), (Article 5), 1–23.

    Article  Google Scholar 

  • Logvinenko, A. D. (2009c). Pseudoscopic colour illusions. In D. Smith, P. Green-Armytage, M. A. Pope, & N. Harkness (Eds.), Proceedings of the 11th congress of the international colour association (AIC 2009). Sydney: Colour Society of Australia, CD.

    Google Scholar 

  • Logvinenko, A. D. (2012). A theory of unique hues and colour categories in the human colour vision. Color Research and Application, 37(2), 109–116.

    Article  Google Scholar 

  • Logvinenko, A. D., & Beer, A. (2012). Colour constancy investigated via partial hue-matching. Journal of Vision, 12(4, Article 17) 1–20.

    Article  Google Scholar 

  • Logvinenko, A. D., & Levin, V. L. (2012). Foundations of Colour Science

  • Logvinenko, A. D., & Maloney, L. T. (2006). The proximity structure of achromatic surface colors and the impossibility of asymmetric lightness matching. Perception & Psychophysics, 68, 76–83.

    Article  Google Scholar 

  • Logvinenko, A. D., & Menshikova, G. Y. (1994). Trade-off between achromatic colour and perceived illumination as revealed by the use of pseudoscopic inversion of apparent depth. Perception, 23, 1007–1023.

    Article  Google Scholar 

  • Logvinenko, A. D., & Tokunaga, R. (2011). Colour constancy as measured by least dissimilar matching. Seeing and Perceiving, 24, 407–452.

    Article  Google Scholar 

  • Logvinenko, A. D., Funt, B., & Godau, C. (2012). Metamer mismatch volumes. In Proc. CGIV2012 IS&T sixth European conf. on colour in graphics, imaging and vision, Amsterdam, May 2012. Springfield: Society for Imaging Science and Technology,

    Google Scholar 

  • MacLeod, D. I. A. (2003). New dimensions in color perception. Trends in Cognitive Sciences, 7, 97–99.

    Article  Google Scholar 

  • MacLeod, D. I. A., & Golz, J. (2003). A computational analysis of colour constancy. In R. Mausfeld & D. Heyer (Eds.), Colour vision: from light to object (pp. 205–242). Oxford: Oxford University Press.

    Google Scholar 

  • Maloney, L. T. (1999). Physics-based approaches to modeling surface color perception. In K. R. Gegenfurtner & L. T. Sharpe (Eds.), Color vision: from genes to perception (pp. 387–422). Cambridge: Cambridge University Press.

    Google Scholar 

  • Maloney, L. T. (2003). Surface color perception and environmental constraints. In R. Mausfeld & D. Heyer (Eds.), Colour vision: from light to object (pp. 279–300). Oxford: Oxford University Press.

    Google Scholar 

  • Maloney, L. T., & Wandell, B. A. (1986). Color constancy: a method for recovering surface reflectance. Journal of the Optical Society of America A, Online, 3, 29–33.

    Article  Google Scholar 

  • Mausfeld, R. (1998). Color perception: from Grassmann codes to a dual code for object and illumination colors. In W. G. K. Backhaus, R. Kliegl, & J. Werner (Eds.), Color vision (pp. 219–250). Berlin: Walter de Gruyter.

    Chapter  Google Scholar 

  • Mausfeld, R. (2003). ‘Colour’ as part of the format of different perceptual primitives: the dual coding of colour. In R. Mausfeld & D. Heyer (Eds.), Colour perception: mind and the physical world (pp. 381–430). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Nikolaev, P. P. (1985). A colour constancy model with continuous spectral functions. Biophysics, 30, 112–117.

    Google Scholar 

  • Pokorny, J., Shevell, S. K., & Smith, V. C. (1991). Colour appearance and colour constancy. In P. Gouras (Ed.), The perception of colour. Vision & visual dysfunction (Vol. 6, pp. 43–61). Basingstoke: Macmillan.

    Google Scholar 

  • Riemann, G. F. B. (1867). Uber die Hypothesen, welche der Geometrie zu Grunde liegen. Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13.

  • Schanda, J. (2007a). Color rendering of light sources. In J. Schanda (Ed.), Colorimetry. New York: Wiley.

    Chapter  Google Scholar 

  • Schanda, J. (Ed.) (2007b). Colorimetry. New York: Wiley.

    Google Scholar 

  • Schrodinger, E. (1920). Theorie der Pigmente von grosster Leuchtkraft. Annalen der Physik, 62, 603–622.

    Article  Google Scholar 

  • Schrodinger, E. (1970). Outline of a theory of color measurement for daylight vision. In D. L. MacAdam (Ed.), Sources of color sciences (pp. 134–182). Cambridge, London: The MIT Press.

    Google Scholar 

  • Shepard, R. (1992). The perceptual organization of colors: an adaptation to regularities of the terrestrial world? In R. Shepard (Ed.), The adapted mind; evolutionary psychology and the generation of culture (p. 495). New York: Oxford University Press.

    Google Scholar 

  • Shevell, S. K., & Kingdom, F. A. A. (2008). Color in complex scenes. Annual Review of Psychology, 59, 143–166.

    Article  Google Scholar 

  • Suppes, P., Krantz, D. H., Luce, R. D., & Tversky, A. (Eds.) (1989). Foundations of measurement: Vol2. Geometrical, threshold, and probabilistic representations. San Diego: Academic Press.

    MATH  Google Scholar 

  • Tokunaga, R., & Logvinenko, A. D. (2010a). Hue manifold. Journal of the Optical Society of America A, Online, 27, 2551–2557.

    Article  Google Scholar 

  • Tokunaga, R., & Logvinenko, A. D. (2010b). Material and lighting dimensions of object colour. Vision Research, 50, 1740–1747.

    Article  Google Scholar 

  • Tokunaga, R., & Logvinenko, A. D. (2010c). Material and lighting hues of object colour. Ophthalmic & Physiological Optics, 30, 611–617.

    Article  Google Scholar 

  • Tokunaga, R., Logvinenko, A. D., & Maloney, L. T. (2008). Dissimilarity of yellow-blue surfaces under neutral light sources differing in intensity: separate contributions of light intensity and chroma. Visual Neuroscience, 25, 395–398.

    Article  Google Scholar 

  • Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.

    Article  Google Scholar 

  • van Trigt, C. (2007). Linear models in color constancy theory. Journal of the Optical Society of America A, Online, 24, 2684–2691.

    Article  Google Scholar 

  • Volbrecht, V. J., & Kliegl, R. (1998). The perception of blackness: an historical and contemporary review. In W. G. K. Backhaus, R. Kliegl, & J. Werner (Eds.), Color vision (pp. 187–218). Berlin: Walter de Gruyter.

    Chapter  Google Scholar 

  • von Helmholtz, H. (1867). Handbuch der physiologischen optik. Hamburg: Voss.

    Google Scholar 

  • Weinberg, J. W. (1976). In The geometry of colors. General relativity and gravitation (Vol. 7, pp. 135–169).

    Google Scholar 

  • Whittle, P. (2003). Contrast colours. In R. Mausfeld & D. Heyer (Eds.), Colour perception: mind and the physical world (pp. 115–138). Oxford: Oxford University Press.

    Chapter  Google Scholar 

  • Wyszecki, G., & Stiles, W. S. (1982). Color science: concepts and methods, quantitative data and formulae (2nd edn.). New York: Wiley.

    Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant (EP/C010353/1) from EPSRC. I wish to thank Brian Funt for fruitful discussions and encouragement while working on the article. I am also very grateful to Michael H. Brill for valuable criticism of the early draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Logvinenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logvinenko, A.D. Object-Colour Manifold. Int J Comput Vis 101, 143–160 (2013). https://doi.org/10.1007/s11263-012-0555-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-012-0555-2

Keywords

Navigation