Skip to main content
Log in

Combinatorial Optimization of the Discretized Multiphase Mumford–Shah Functional

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

The Mumford–Shah model has been one of the most influential models in image segmentation and denoising. The optimization of the multiphase Mumford–Shah energy functional has been performed using level sets methods that optimize the Mumford–Shah energy by evolving the level sets via the gradient descent. These methods are very slow and prone to getting stuck in local optima due to the use of gradient descent. After the reformulation of the 2-phase Mumford–Shah functional on a graph, several groups investigated the hierarchical extension of the graph representation to multi class. The discrete hierarchical approaches are more effective than hierarchical (or direct) multiphase formulation using level sets. However, they provide approximate solutions and can diverge away from the optimal solution. In this paper, we present a discrete alternating optimization for the discretized Vese–Chan approximation of the piecewise constant multiphase Mumford–Shah functional that directly minimizes the multiphase functional without recursive bisection on the labels. Our approach handles the nonsubmodularity of the multiphase energy function and provides a global optimum if the image estimation data term is known apriori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Badshah, N., & Chen, K. (2009). On two multigrid algorithms for modeling variational multiphase image segmentation. IEEE Transaction on Image Processing, 18(5), 1097–1106.

    Article  MathSciNet  Google Scholar 

  • Bae, E., & Tai, X. C. (2009). Efficient global minimization for the multiphase Chan–Vese model of image segmentation. In International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR ’09 (pp. 28–41).

  • Bae, E., & Tai, X. C. (2009). Graph cut optimization for the piecewise constant level set method applied to multiphase image segmentation. In International Conference of Scale Space and Variational Methods in Computer Vision (pp. 1–13).

  • Bae, E., Yuan, J., & Tai, X. C. (2011). Global minimization for continuous multiphase partitioning problems using a dual approach. International Journal of Computer Vision, 92(1), 112–129.

    Google Scholar 

  • Boros, E., Hammer, P. L., & Tavares, G. (2006). Preprocessing of unconstrained quadratic binary optimization. Tech. Rep. RRR 10–2006, RUTCOR.

  • Boykov, Y., Veksler, O., & Zabih, R . (1999). Fast approximate energy minimization via graph cuts. In International Conference for Computer Vision, ICCV99 (Vol. 1, pp. 377–384).

  • Bresson, X., Esedognlu, S., Vandergheynst, P., Thiran, J. P., & Osher, S. (2007). Fast global minimization of the active contour/snake model. Journal of Mathematical Imaging and Vision, 2, 151–167.

    Article  Google Scholar 

  • Brown, E., Chan, T., & Bresson, X. (2010). A convex approach for multiphase piecewise constant Mumford–Shah image segmentation. Tech. Rep. CAM 09–66, UCLA.

  • Bruckstein, A., Netravali, A., & Richardson, T. (1997). Epi-convergence of discrete elastica. Applicable Analysis, 79(1–2), 137–171.

    MathSciNet  Google Scholar 

  • Chan, T. F., & Vese, L. A. (2001). Active contours without edges. IEEE Transation on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  • Chung, G., & Vese, L. A. (2005). Energy minimization based segmentation and denoising using a multilayer level set approach. In International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition (pp. 439–455).

  • Collins, D. L., Zijdenbos, A. P., Kollokian, V., Sled, J. G., Kabani, N. J., Holmes, C. J., et al. (1998). Design and construction of a realistic digital brain phantom. IEEE Transactions on Medical Imaging, 17(3), 463–468.

    Google Scholar 

  • Darbon, J., & Sigelle, M. (2005). A fast and exact algorithm for total variation minimization. IbPRIA, 3522(1), 351–359.

    Google Scholar 

  • Delong, A., & Boykov, Y. (2009). Global optimal segmentation of multi-region objects. In International Conference on Computer Vision (Vol. 1, pp. 26–33).

  • El-Zehiry, N., & Elmaghraby, A. (2008). A graph cut based active contour without edges with relaxed homogeneity constraint. In International Conference on Pattern Recognition (pp. 1–4).

  • El-Zehiry, N., Xu, S., Sahoo, P., & Elmaghraby, A. (2007). Graph cut optimization for the mumford-shah model. In International Conference on Visualization, Imaging and Image Processing (pp. 182–187).

  • El-Zehiry, N., Sahoo, P., & Elmaghraby, A. (2011). Combinatorial optimization of the piecewise constant Mumford–Shah functional with application to scalar/vector valued and volumetric image segmentation. Image and Vision Computing, 29, 365–381.

    Article  Google Scholar 

  • El-Zehiry, N. Y. (2009). A graph cut framework for two dimensional/three dimensional implicit front propagation with application to the image segmentation problem. PhD thesis, Louisville, KY.

  • El-Zehiry, N. Y., & Elmaghraby, A. (2007). Brain MRI tissue classification using graph cut optimization of the Mumford–Shah functional. In Inernational Vision Conference of New Zealand, New Zealnd (pp. 321–326).

  • Grady, L., & Alvino, C. (2009). The piecewise smooth Mumford–Shah functional on an arbitrary graph. IEEE Transaction on Image Processing, 18(11), 2547–2561.

    Article  MathSciNet  Google Scholar 

  • Grady, L., & Polimeni, J. R. (2010). Discrete calculus: Applied analysis on graphs for computational science. New York: Springer.

    Book  Google Scholar 

  • Hammer, P. L., Hansen, P., & Simeone, B. (1984). Roof duality, complementation and persistency in quadratic 01 optimization. Mathematical Programming, 28(2), 121–155.

    Article  MathSciNet  MATH  Google Scholar 

  • Ishikawa, H. (2003). Exact optimization for Markov random fields with convex priors. IEEE Transaction on Pattern Analysis and Machine Intelligence, 25, 1333–1336.

    Article  Google Scholar 

  • Jeon, M., Alexander, M., Pedrycz, W., & Pizzi, N. (2005). Unsupervised hierarchical image segmentation with level set and additive operator splitting. Pattern Recognition Letters, 26, 1461–1469.

    Article  Google Scholar 

  • Kahl, F., & Strandmark, P. (2011). Generalized roof duality for pseudo-boolean optimization. In International Conference on Computer Vision (pp. 255–262).

  • Kohli, P., Kumar, M. P., & Torr, P. H. S. (2009). P & beyond: Move making algorithms for solving higher order functions. IEEE Transaction on Pattern Analysis and Machine Intelligence, 31(9), 1645–1656.

    Article  Google Scholar 

  • Kolmogorov, V. (2003). Graph based algorithms for scene reconstruction from two or more views. PhD thesis, Cornell University.

  • Kolmogorov, V., & Boykov, Y. (2005). What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In International Conference on Computer Vision, ICCV05 (Vol. 1, pp. 564–571).

  • Kolmogorov, V., & Rother, C. (2007). Minimizing nonsubmodular functions with graph cuts-a review. IEEE Transaction on Pattern Analysis and Machine Intelligence, 29(7), 1274–1279.

    Article  Google Scholar 

  • Kolmogorov, V., & Zabih, R. (2004). What energy functions can be minimized via graph cuts? IEEE Transaction on Pattern Analysis and Machine Intelligence, 26(2), 147–159.

    Article  Google Scholar 

  • Komodakis, N., & Tziritas, G. (2007). Approximate labeling via graph cuts based on linear programming. IEEE Transaction on Pattern Analysis and Machine Intelligence, 29(8), 1436–1453.

    Article  Google Scholar 

  • Kwan, R. S., Evans, A., & Pike, G. (1999). MRI simulation-based evaluation of image-processing and classification methods. IEEE Transactions on Medical Imaging, 18(11), 1085–1097.

    Article  Google Scholar 

  • Lellmann, J., Becker, F., & Schnörr, C. (2009). Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In International Conference on Computer Vision (pp. 646–653).

  • Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In International Conference on Computer Vision (Vol. 2, pp. 416–423).

  • Mumford, D., & Shah, J. (1988). Optimal approximations by piecewise smooth functions and variational problems. Communications of, Pure and Applied Mathematics, XLII(5), 577–685.

    MathSciNet  Google Scholar 

  • Ni, K., Hong, B. W., Soatto, S., & Chan, T. (2009). Unsupervised multiphase segmentation: A recursive approach. Computer Vision and Image Understanding, 113(4), 502–510.

    Article  Google Scholar 

  • Osher, S., & Sethian, J. A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics, 79(1), 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  • Pock, T., Schoenemann, T., Graber, G., Bischof, H., & Cremers, D. (2008). A convex formulation of continuous multi-label problems. In European Conference on Computer Vision (pp. 792–805).

  • Pock, T., Cremers, D., Bischof, H., & Chambolle, A. (2009). An algorithm for minimizing the Mumford-Shah functional. In International Conference on Computer Vision (pp. 1133–1140).

  • Ramalingam, S., Kohli, P., Alahari, K., & Torr, P. H. S. (2008). Exact inference in multi-label CRFs with higher order cliques. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–8).

  • Rother, C., Kolmogorov, V., Lempitsky, V., & Szummer, M. (2007). Optimizing binary MRFs via extended roof duality. IEEE Conference on Computer Vision and Pattern Recognition, 5302, 248–261.

    Google Scholar 

  • Simon, H., & Teng, S. H. (2001). How good is recursive bisection? SIAM Journal on Scientific Computing, 18(5), 1436–1445.

    Article  MathSciNet  Google Scholar 

  • Vazquez-Reina, A., Miller, E., & Pfister, H. (2009). Multiphase geometric couplings for the segmentation of neural processes. IEEE Conference Computer Vision and, Pattern Recognition (pp. 2020–2027).

  • Vese, L. A., & Chan, T. F. (2002). A multiphase level set framework for image segmentation using the Mumford and Shah model. International Journal of Computer Vision, 50(3), 271–293.

    Google Scholar 

  • Wainwright, M., Jaakkola, T., & Willsky, A. (2002). MAP estimation via agreement on (hyper)trees: Message-passing and linear programming approaches. IEEE Transactions on Information Theory, 51, 3697–3717.

    Article  MathSciNet  Google Scholar 

  • Yuan, J., Bae, E., Boykov, Y., & Tai, X. C. (2011). A continuous max-flow approach to minimal partitions with label cost prior. In Scale Space and Variational Methods in Computer Vision (pp. 279–290).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noha Youssry El-Zehiry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Zehiry, N.Y., Grady, L. Combinatorial Optimization of the Discretized Multiphase Mumford–Shah Functional. Int J Comput Vis 104, 270–285 (2013). https://doi.org/10.1007/s11263-013-0617-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-013-0617-0

Keywords

Navigation