Skip to main content

Advertisement

Log in

Geometry-Based Symbolic Approximation for Fast Sequence Matching on Manifolds

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of fast and efficient indexing techniques for sequences evolving in non-Euclidean spaces. This problem has several applications in the areas of human activity analysis, where there is a need to perform fast search, and recognition in very high dimensional spaces. The problem is made more challenging when representations such as landmarks, contours, and human skeletons etc. are naturally studied in a non-Euclidean setting where even simple operations are much more computationally intensive than their Euclidean counterparts. We propose a geometry and data adaptive symbolic framework that is shown to enable the deployment of fast and accurate algorithms for activity recognition, dynamic texture recognition, motif discovery. Toward this end, we present generalizations of key concepts of piece-wise aggregation and symbolic approximation for the case of non-Euclidean manifolds. We show that one can replace expensive geodesic computations with much faster symbolic computations with little loss of accuracy in activity recognition and discovery applications. The framework is general enough to work across both Euclidean and non-Euclidean spaces, depending on appropriate feature representations without compromising on the ultra-low bandwidth, high speed and high accuracy. The proposed methods are ideally suited for real-time systems and low complexity scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Absil, P.-A., Mahony, R., & Sepulchre, R. (2004). Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Applicandae Mathematicae, 80(2), 199–220.

    Article  MathSciNet  MATH  Google Scholar 

  • Ali, S., Basharat, A., & Shah, M. (2007). Chaotic invariants for human action recognition. In ICCV (pp. 1–8).

  • Allauzen, C., & Raffinot, M. (2000). Simple optimal string matching algorithm. In Combinatorial Pattern Matching (Vol. 1848, pp. 364–374). Lecture Notes in Computer Science Berlin Heidelberg: Springer.

  • Boothby, W. M. (2003). An introduction to differentiable manifolds and Riemannian geometry (2nd ed.). New York: Academic Press.

    Google Scholar 

  • Çetingül, H. E., & Vidal, R. (2009). Intrinsic mean shift for clustering on stiefel and grassmann manifolds. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1896–1902). Miami.

  • Chakrabarti, K., Keogh, E. J., Mehrotra, S., & Pazzani, M. J. (2002). Locally adaptive dimensionality reduction for indexing large time series databases. ACM Transactions on Database System, 27(2), 188–228.

    Article  Google Scholar 

  • Chan, A., & Vasconcelos, N. (2005). Classification and retrieval of traffic video using auto-regressive stochastic processes. In Proceedings of IEEE Intelligent Vehicles Symposium, 2005 (pp. 771–776).

  • Chaudhry, R., & Ivanov, Y. (2010). Fast approximate nearest neighbor methods for non-Euclidean manifolds with applications to human activity analysis in videos. In European Conference on Computer Vision. Crete.

  • Chaudhry, R., Ravichandran, A., Hager, G., & Vidal, R. (2009). Histograms of oriented optical flow and Binet-Cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In CVPR, 2009 (pp. 1932–1939).

  • Chum, O., Perdoch, M., & Matas, J. (2009). Geometric min-hashing: Finding a (thick) needle in a haystack. In CVPR (pp. 17–24).

  • Desieno, D. (1988). Adding a conscience to competitive learning. IEEE International Conference on Neural Networks, 1, 117–124.

    Article  Google Scholar 

  • Devroye, L., Szpankowski, W., & Rais, B. (1992). A note on the height of suffix trees. SIAM Journal on Computing, 21(1), 48–53.

    Article  MathSciNet  MATH  Google Scholar 

  • Fletcher, P. T., Lu, C., Pizer, S. M., & Joshi, S. C. (2004). Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions on Medical Imaging, 23(8), 995–1005.

    Article  Google Scholar 

  • Gaur, U., Zhu, Y., Song, B., & Chowdhury, A. K. R. (2011). A ‘string of feature graphs’ model for recognition of complex activities in natural videos. In ICCV (pp. 2595–2602).

  • Goodall, C. R., & Mardia, K. V. (1999). Projective shape analysis. Journal of Computational and Graphical Statistics, 8(2), 143–198.

    MathSciNet  Google Scholar 

  • Gorelick, L., Blank, M., Shechtman, E., Irani, M., & Basri, R. (2007). Actions as space-time shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(12), 2247–2253.

    Article  Google Scholar 

  • Grove, K., & Karcher, H. (1973). How to conjugate C\(^1\)-close group actions. Mathematische Zeitschrift, 132, 11–20.

    Article  MathSciNet  MATH  Google Scholar 

  • Harandi, M. T., Salzmann, M., & Hartley, R. (2014). From manifold to manifold: Geometry-aware dimensionality reduction for SPD matrices. In ECCV (pp. 17–32).

  • Jordan, M. I. (1998). Learning in Graphical Models. Cambridge: MIT Press.

    Book  MATH  Google Scholar 

  • Joshi, S. H., Klassen, E., Srivastava, A., & Jermyn, I. (2007). A novel representation for Riemannian analysis of elastic curves in R\(^{\text{ n }}\). In CVPR.

  • Kendall, D. (1984). Shape manifolds, procrustean metrics and complex projective spaces. Bulletin of London Mathematical society, 16, 81–121.

    Article  MathSciNet  MATH  Google Scholar 

  • Kohonen, T. (1995). Self-organizing maps. Berlin: Springer.

    Book  Google Scholar 

  • Lafferty, J. D., & Lebanon, G. (2005). Diffusion kernels on statistical manifolds. Journal of Machine Learning Research, 6, 129–163.

    MathSciNet  MATH  Google Scholar 

  • Lin, J., Keogh, E. J., Lonardi, S., & chi Chiu, B. Y. (2003). A symbolic representation of time series, with implications for streaming algorithms. In DMKD (pp. 2–11).

  • Lin, J., & Li, Y. (2010). Finding approximate frequent patterns in streaming medical data. In CBMS (pp. 13–18).

  • Lin, T., & Zha, H. (2008). Riemannian manifold learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30, 796–809.

    Article  Google Scholar 

  • Lui, Y. M., Beveridge, J. R., & Kirby, M. (2010). Action classification on product manifolds. In CVPR (pp. 833–839).

  • Mueen, A., Keogh, E. J., Zhu, Q., Cash, S., & Westover, M. B. (2009). Exact discovery of time series motifs. In SDM (pp. 473–484).

  • Patel, P., Keogh, E., Lin, J., & Lonardi, S. (2002). Mining motifs in massive time series databases. In Proceedings of the 2002 IEEE International Conference on Data Mining, ICDM 2003 (pp. 370–377).

  • Pennec, X. (2006). Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. Journal of Mathematical Imaging and Vision, 25(1), 127–154.

    Article  MathSciNet  Google Scholar 

  • Pennec, X., Fillard, P., & Ayache, N. (2006). A Riemannian framework for tensor computing. International Journal of Computer Vision, 66(1), 41–66.

    Article  MathSciNet  MATH  Google Scholar 

  • Rahman, I. U., Drori, I., Stodden, V. C., Donoho, D. L., & Schrder, P. (2005). Multiscale representations for manifold-valued data. Multiscale Modeling and Simulation, 4(4), 1201–1232.

    Article  MathSciNet  MATH  Google Scholar 

  • Revaud, J., Douze, M., Schmid, C., & Jegou, H. (2013). Event retrieval in large video collections with circulant temporal encoding. In CVPR (pp. 2459–2466).

  • Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290, 2323–2326.

    Article  Google Scholar 

  • Sankaranarayanan, A. C., Turaga, P. K., Baraniuk, R. G., & Chellappa, R. (2010). Compressive acquisition of dynamic scenes. In ECCV (vol. 1, pp. 129–142).

  • Soatto, S., Doretto, G., & Wu, Y. N. (2001). Dynamic textures. ICCV (vol. 2, pp. 439–446).

  • Spivak, M. (1999). A comprehensive introduction to differential geometry (3rd ed., Vol. 1). Houston: Publish or Perish Inc.

    MATH  Google Scholar 

  • Srivastava, A., Jermyn, I., & Joshi, S. (2007). Riemannian analysis of probability density functions with applications in vision. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–8).

  • Srivastava, A., Klassen, E., Joshi, S. H., & Jermyn, I. H. (2011). Shape analysis of elastic curves in Euclidean spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33, 1415–1428.

    Article  Google Scholar 

  • Su, J., Kurtek, S., Klassen, E., & Srivastava, A. (2014). Statistical analysis of trajectories on Riemannian manifolds: Bird migration, hurricane tracking, and video surveillance. Annals of Applied Statistics, 8(1), 530–552.

    Article  MathSciNet  MATH  Google Scholar 

  • Tenenbaum, J. B., Silva, Vd, & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

    Article  Google Scholar 

  • Turaga, P., Veeraraghavan, A., Srivastava, A., & Chellappa, R. (2010). Statistical analysis on manifolds and its applications to video analysis. In D. Schonfeld, C. Shan, D. Tao, & L. Wang (Eds.), Video search and mining (Vol. 287, pp. 115–144)., Studies in computational intelligence Berlin: Springer.

    Chapter  Google Scholar 

  • Turaga, P. K., & Chellappa, R. (2009). Locally time-invariant models of human activities using trajectories on the Grassmannian. In CVPR (pp. 2435–2441).

  • Turaga, P. K., Veeraraghavan, A., Srivastava, A., & Chellappa, R. (2011). Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(11), 2273–2286.

    Article  Google Scholar 

  • Tuzel, O., Porikli, F. M., & Meer, P. (2006). Region covariance: A fast descriptor for detection and classification. In European Conference on Computer Vision (vol. II, pp. 589–600).

  • Vahdatpour, A., Amini, N., & Sarrafzadeh, M. (2009). Toward unsupervised activity discovery using multi-dimensional motif detection in time series. In IJCAI (pp. 1261–1266).

  • Veeraraghavan, A., & Chowdhury, A. K. R. (2006). The function space of an activity. In CVPR (vol. 1, pp. 959–968).

  • Veeraraghavan, A., Chowdhury, A. K. R., & Chellappa, R. (2005). Matching shape sequences in video with applications in human movement analysis. IEEE Transactions on Pattern Analysis and Machine Intellience, 27(12), 1896–1909.

    Article  Google Scholar 

  • Vemulapalli, R., Arrate, F., & Chellappa, R. (2014). Human action recognition by representing 3d skeletons as points in a lie group. In CVPR, 2014 (pp. 588–595).

  • Vishwanathan, S. V. N., Borgwardt, K. M., Kondor, I. R., & Schraudolph, N. N. (2008). Graph kernels. CoRR, abs/0807.0093.

  • Xia, L., Chen, C., & Aggarwal, J. (2012). View invariant human action recognition using histograms of 3d joints. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2012. IEEE (pp. 20–27).

  • Yao, A. (1979). The complexity of pattern matching for a random string. SIAM Journal on Computing, 8(3), 368–387.

    Article  MathSciNet  MATH  Google Scholar 

  • Yi, S., Krim, H., & Norris, L. K. (2012). Human activity as a manifold-valued random process. IEEE Transactions on Image Processing, 21(8), 3416–3428.

    Article  MathSciNet  Google Scholar 

  • Zador, P. (1982). Asymptotic quantization error of continuous signals and the quantization dimension. IEEE Transactions on Information Theory, 28(2), 139–149.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

Rushil Anirudh and Pavan Turaga were supported by the NSF CCF CIF grant #1320267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rushil Anirudh.

Additional information

Communicated by Larry Davis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anirudh, R., Turaga, P. Geometry-Based Symbolic Approximation for Fast Sequence Matching on Manifolds. Int J Comput Vis 116, 161–173 (2016). https://doi.org/10.1007/s11263-015-0835-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-015-0835-8

Keywords

Navigation