Skip to main content
Log in

Exemplar-Guided Similarity Learning on Polynomial Kernel Feature Map for Person Re-identification

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Person re-identification is a crucial problem for video surveillance, aiming to discover the correct matches for a probe person image from a set of gallery person images. To directly describe the image pair, we present a novel organization of polynomial kernel feature map in a high dimensional feature space to break down the variability of positive person pairs. An exemplar-guided similarity function is built on the map, which consists of multiple sub-functions. Each sub-function is associated with an “exemplar” image being responsible for a particular type of image pair, thus excels at separating the persons with similar appearance. We formulate a unified learning problem including a relaxed loss term as well as two kinds of regularization strategies particularly designed for the feature map. The corresponding optimization algorithm jointly optimizes the coefficients of all the sub-functions and selects the proper exemplars for a better discrimination. The proposed method is extensively evaluated on six public datasets, where we thoroughly analyze the contribution of each component and verify the generalizability of our approach by cross-dataset experiments. Results show that the new method can achieve consistent improvements over state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed, E., Jones, M., & Marks, T. K. (2015). An improved deep learning architecture for person re-identification. In: The IEEE conference on computer vision and pattern recognition (CVPR).

  • Bak, S., Corvée, E., Brémond, F., & Thonnat, M. (2010). Person re-identification using spatial covariance regions of human body parts. In: International conference on advanced video and signal based surveillance.

  • Baltieri, D., Vezzani, R., & Cucchiara, R. (2011). Sarc3d: A new 3D body model for people tracking and re-identification. In: International conference on image analysis and processing.

  • Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge university press.

    Book  MATH  Google Scholar 

  • Boyd, S. P., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2011). Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3(1), 1–122.

    Article  MATH  Google Scholar 

  • Chen, D., Yuan, Z., Hua, G., Zheng, N., & Wang, J. (2015). Similarity learning on an explicit polynomial kernel feature map for person re-identification. In: Conference on computer vision and pattern recognition.

  • Chen, D., Yuan, Z., Chen, B., & Zheng, N. (2016). Similarity learning with spatial constraints for person re-identification. In: Conference on computer vision and pattern recognition.

  • Cheng, D. S., Cristani, M., Stoppa, M., Bazzani, L., & Murino, V. (2011). Custom pictorial structures for re-identification. In: British machine vision conference.

  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In: Computer vision and pattern recognition.

  • Ding, S., Lin, L., Wang, G., & Chao, H. (2015). Deep feature learning with relative distance comparison for person re-identification. Pattern Recognition, 48(10), 2993–3003.

    Article  Google Scholar 

  • Farenzena, M., Bazzani, L., Perina, A., Murino, V., & Cristani, M. (2010). Person re-identification by symmetry-driven accumulation of local features. In: Computer vision and pattern recognition.

  • Fisher, R. A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179–188.

    Article  Google Scholar 

  • Frey, B. J., & Dueck, D. (2007). Clustering by passing messages between data points. Science, 315, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  • Gong, S., Cristani, M., Yan, S., & Loy, C. C. (Eds.). (2014). Person re-identification. Advances in computer vision and pattern recognition. Berlin: Springer.

    Google Scholar 

  • Gray, D., Brennan, S., & Tao, H. (2007). Evaluating appearance models for recognition, reacquisition, and tracking. In: International Workshop on PETS, Rio de Janeiro.

  • Hirzer, M., Beleznai, C., Roth, P. M., & Bischof, H. (2011). Person re-identification by descriptive and discriminative classification. In: Scandinavian conference on image analysis (pp. 91–102).

  • Hirzer, M., Roth, P. M., Kostinger, M., & Bischof, H. (2012). Relaxed pairwise learned metric for person re-identification. In: European conference on computer vision.

  • Hotelling, H. (1936). Relations between two sets of variates. Biometrika, 28(3/4), 321–377.

    Article  MATH  Google Scholar 

  • Jégou, H., & Chum, O. (2012). Negative evidences and co-occurences in image retrieval: The benefit of PCA and whitening. In: European conference on computer vision.

  • Kjems, U., Hansen, L.K., & Strother, S. C. (2000). Generalizable singular value decomposition for ill-posed datasets. In: Neural information processing systems (pp. 549–555).

  • Köstinger, M., Hirzer, M., Wohlhart, P., Roth, P. M., & Bischof, H. (2012). Large scale metric learning from equivalence constraints. In: Computer vision and pattern recognition.

  • Li, W., & Wang, X. (2013). Locally aligned feature transforms across views. In: Computer vision and pattern recognition.

  • Li, W., Zhao, R., Xiao, T., & Wang, X. (2014). Deepreid: Deep filter pairing neural network for person re-identification. In IEEE conference on computer vision and pattern recognition (CVPR).

  • Li, Y., Wu, Z., & Radke, R.J. (2015). Multi-shot re-identification with random-projection-based random forests. In Winter conference on applications of computer vision.

  • Li, Z., Chang, S., Liang, F., Huang, T.S., Cao, L., & Smith, J.R. (2013). Learning locally-adaptive decision functions for person verification. In Computer vision and pattern recognition.

  • Liao, S., Zhao, G., Kellokumpu, V., Pietikäinen, M., & Li, S.Z. (2010). Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes. In Conference on computer vision and pattern recognition (pp. 1301–1306).

  • Liao, S., Hu, Y., Zhu, X., & Li, S.Z. (2015). Person re-identification by local maximal occurrence representation and metric learning. In The IEEE conference on computer vision and pattern recognition (CVPR).

  • Loy, C.C., Liu, C., & Gong, S. (2013). Person re-identification by manifold ranking. In International conference on image processing.

  • Ma, B., Su, Y., & Jurie, F. (2012a). Bicov: A novel image representation for person re-identification and face verification. In British machine vision conference.

  • Ma, B., Su, Y., & Jurie, F. (2012b). Local descriptors encoded by fisher vectors for person re-identification. In ECCV workshops and demonstrations.

  • Ma, L., Yang, X., & Tao, D. (2014). Person re-identification over camera networks using multi-task distance metric learning. IEEE Transactions on Image Processing, 23(8), 3656–3670.

    Article  MathSciNet  Google Scholar 

  • Mignon, A., & Jurie, F. (2012). PCCA: A new approach for distance learning from sparse pairwise constraints. In Computer vision and pattern recognition.

  • Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.

  • Paisitkriangkrai, S., Shen, C., & van den Hengel, A. (2015). Learning to rank in person re-identification with metric ensembles. In The IEEE conference on computer vision and pattern recognition (CVPR).

  • Pedagadi, S., Orwell, J., Velastin, S.A., & Boghossian, B.A. (2013). Local fisher discriminant analysis for pedestrian re-identification. In Computer vision and pattern recognition.

  • Prosser, B., Zheng, W., Gong, S., & Xiang, T. (2010). Person re-identification by support vector ranking. In British machine vision conference.

  • Schwartz, W.R., & Davis, L.S. (2009). Learning discriminative appearance-based models using partial least squares. In XXII Brazilian symposium on computer graphics and image processing.

  • Tuzel, O., Porikli, F., & Meer, P. (2006). Region covariance: A fast descriptor for detection and classification. In European conference on computer vision.

  • Wu, Z., Li, Y., & Radke, R. J. (2015). Viewpoint invariant human re-identification in camera networks using pose priors and subject-discriminative features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(5), 1095–1108.

    Article  Google Scholar 

  • Xiong, F., Gou, M., Camps, O.I., & Sznaier, M. (2014). Person re-identification using kernel-based metric learning methods. In European conference on computer vision.

  • Xu, Y., Lin, L., Zheng, W., & Liu, X. (2013). Human re-identification by matching compositional template with cluster sampling. In International conference on computer vision (pp. 3152–3159).

  • Yang, Y., Yang, J., Yan, J., Liao, S., Yi, D., & Li, S.Z. (2014). Salient color names for person re-identification. In European conference on computer vision.

  • Zhang, Z., Chen, Y., & Saligrama, V. (2014). A novel visual word co-occurrence model for person re-identification. In: ECCV workshops.

  • Zhao, R., Ouyang, W., & Wang, X. (2013). Unsupervised salience learning for person re-identification. In Computer vision and pattern recognition.

  • Zhao, R., Ouyang, W., & Wang, X. (2014). Learning mid-level filters for person re-identification. In Conference on computer vision and pattern recognition.

  • Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Bu, J., & Tian, Q. (2015). Scalable person re-identification: A benchmark. In International conference on computer vision.

  • Zheng, W., Gong, S., & Xiang, T. (2009). Associating groups of people. In British machine vision conference.

  • Zheng, W., Gong, S., & Xiang, T. (2013). Reidentification by relative distance comparison. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(3), 653–668.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2016YFB1001001), the National Basic Research Program of China (No. 2015CB351703, No. 2012CB316400), the National Natural Science Foundation of China (No. 61573280, No. 91648121, No. 61603022, No. 61573273).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zejian Yuan or Jingdong Wang.

Additional information

Communicated by Zhouchen Lin.

Appendices

Dual Form Deviation for Updating \({\mathbf{U}}_{1}\)

In this section, we will give the deviation from Eqs. (31) to (35). As \( g_{1}({\mathbf{U}}_{1})=L({\mathbf{U}}_{1})=\frac{1}{N}\sum _{n=1}^{N}[1-\langle \varOmega ({\mathbf{x}}_{n}),{\mathbf{U}}_{1}\rangle ]_{+}\), the problem of Eq. (31) equals:

$$\begin{aligned} \begin{aligned}&\min _{{\mathbf{U}}_{1}, \varvec{\xi }} \quad \frac{\rho }{2}\Vert {\mathbf{U}}_{1}-\left( {\mathbf{U}}_{3}^{l}-\varvec{\varLambda }_{1}^{l}\right) \Vert _{F}^{2}+ \frac{1}{N}\sum _{n=1}^{N} \xi _{n}\\&\text {s.t.} \quad 1 - \langle \varOmega ({\mathbf{x}}_{n}),{\mathbf{U}}_{1}\rangle \le \xi _{n}, \quad \xi _{n} \ge 0, \quad \forall n. \end{aligned} \end{aligned}$$
(40)

The Lagrangian associated with Eq. (40) is:

$$\begin{aligned}&La_{1}({\mathbf{U}}_{1},\varvec{\xi }, \varvec{\alpha }, \varvec{\beta }) = \frac{\rho }{2}\Vert {\mathbf{U}}_{1}-\left( {\mathbf{U}}_{3}^{l}-\varvec{\varLambda }_{1}^{l} \right) \Vert _{F}^{2}+\frac{1}{N}{\mathbf{1}}^{\top }\varvec{\xi }\nonumber \\&\quad +\sum _{n=1}^{N}(1- \langle \varOmega ({\mathbf{x}}_{n}), {\mathbf{U}}_{1}\rangle _{F})\alpha _{n}- \varvec{\alpha }^{\top } \varvec{\xi }- \varvec{\beta }^{\top }\varvec{\xi }, \end{aligned}$$
(41)

where \(\varvec{\alpha }\) and \(\varvec{\beta }\) are dual variable vectors with non-negative elements, and \(\alpha _{n}\) is the n-th element of \(\varvec{\alpha }\). The Lagrangian dual is \(h_{1}(\varvec{\alpha }, \varvec{\beta })= \inf _{{\mathbf{U}}_{1}, \varvec{\xi }} La_{1}({\mathbf{U}}_{1},\varvec{\xi },\varvec{\alpha }, \varvec{\beta })\), with \(\varvec{\alpha }\succeq 0\) and \(\varvec{\beta }\succeq 0\) being the dual feasible. We solve \({\mathbf{U}}_{1}\) and \(\varvec{\xi }\) from the optimality condition:

$$\begin{aligned} \begin{aligned}&\frac{\partial La_{1}}{\partial {\mathbf{U}}_{1}} = \rho \left( {\mathbf{U}}_{1}-{\mathbf{U}}_{3}^{l}+\varvec{\varLambda }_{1}^{l}\right) -\sum _{n=1}^{N} \varOmega ({\mathbf{x}}_{n})\alpha _{n} = {\mathbf{0}} \\&\frac{\partial La_{1}}{\partial \varvec{\xi }} = \frac{1}{N}{\mathbf{1}}^{\top }-\varvec{\alpha }^{\top }-\varvec{\beta }^{\top } = {\mathbf{0}}. \end{aligned} \end{aligned}$$
(42)

Taking Eq. (42) into Eq. (41), \(h_{1}(\varvec{\alpha }, \varvec{\beta })\) becomes:

$$\begin{aligned} \begin{aligned} h_{1}(\varvec{\alpha }, \varvec{\beta })=&-\frac{1}{2\rho }\sum _{i=1}^{N}\sum _{j=1}^{N}\alpha _{i}\alpha _{j}\langle \varOmega ({\mathbf{x}}_{i}), \varOmega ({\mathbf{x}}_{j})\rangle _{F}\\&+{\mathbf{1}}^{\top }\varvec{\alpha }- \sum _{n=1}^{N}\left\langle \varOmega ({\mathbf{x}}_{n}), {\mathbf{U}}_{3}^{l}-\varvec{\varLambda }_{1}^{l} \right\rangle _{F}\alpha _{n}. \end{aligned} \end{aligned}$$
(43)

The dual variable vector \(\varvec{\beta }\) is eliminated. We define the kernel matrix \({\mathbf{H}}\) with each element \(H_{i,j}=\langle \varOmega ({\mathbf{x}}_{i}), \varOmega ({\mathbf{x}}_{j})\rangle _{F}\) and define a vector \({\mathbf{b}}\) with \(b_{n} = \langle \varOmega ({\mathbf{x}}_{n}), {\mathbf{U}}_{3}^{l}-\varvec{\varLambda }_{1}^{l}\rangle _{F}-1\), the dual function becomes:

$$\begin{aligned} h(\varvec{\alpha })=-\frac{1}{2\rho }\varvec{\alpha }^{\top }{\mathbf{H}}\varvec{\alpha }-{\mathbf{b}}^{\top } \varvec{\alpha }\end{aligned}$$
(44)

Also because \(\frac{1}{N}{\mathbf{1}}-\varvec{\alpha }- \varvec{\beta }= {\mathbf{0}}\) and \(\varvec{\alpha }\succeq 0\), \(\alpha _{n}\) belongs to the domain \([0,\frac{1}{N}]\). We therefore obtain the standard quadratic programming problem of Eq. (35). With optimal \(\varvec{\alpha }^{*}\), Eq. (36) is obtained according to Eq. (42).

A Separated ADMM Algorithm for Updating \({\mathbf{U}}_{3}\)

In this section, we present a separated ADMM algorithm for the update of \({\mathbf{U}}_{3}\). Directly projecting a non-symmetric matrix onto \({\mathbb {S}}_{-}^{d}\) is difficult, we therefore introduce an auxiliary set \({\mathcal {C}}'=\{{\mathbf{U}}| {\mathbf{W}}_{M}^{c,k}\in {\mathbb {S}}^{d}, \forall c, \forall k\}\), and define \(g_{3}'({\mathbf{E}}) = \infty \delta [{\mathbf{E}}\in {\mathcal {C}}']\). As \({\mathcal {C}}\subset {\mathcal {C}}'\), the sub-problem of Eq. (33) is equivalent to:

$$\begin{aligned} \begin{aligned}&\min _{{\mathbf{E}}, {\mathbf{F}}} \quad g_{3}'({\mathbf{E}})+ \rho \Vert {\mathbf{E}}-{\mathbf{B}}\Vert _{F}^{2}+g_{3}({\mathbf{F}}) \\&\quad \text {s.t.} \quad {\mathbf{E}} = {\mathbf{F}}, \end{aligned} \end{aligned}$$
(45)

where \({\mathbf{B}}= \frac{1}{2}({\mathbf{U}}_{1}^{l+1}+{\mathbf{U}}_{2}^{l+1}+\varvec{\varLambda }_{1}^{l}+\varvec{\varLambda }_{2}^{l})\), and \({\mathbf{U}}_{3}^{l+1}\) equals the optimal \({\mathbf{E}}\) or \({\mathbf{F}}\). By introducing Lagrange multipliers \( {\mathbf{G}}\), we obtain the augmented Lagrangian:

$$\begin{aligned} \begin{aligned} La_2( {\mathbf{E}},{\mathbf{F}}, {\mathbf{G}})&= g_{3}'({\mathbf{E}})+ \rho \Vert {\mathbf{E}}-{\mathbf{B}}\Vert _{F}^{2}+g_{3}({\mathbf{F}})\\ +\,\rho '\langle {\mathbf{G}},&{\mathbf{E}}-{\mathbf{F}}\rangle _{F}+\frac{\rho '}{2}\Vert {\mathbf{E}}-{\mathbf{F}} \Vert _{F}^{2}, \end{aligned} \end{aligned}$$
(46)

where \(\rho '\) is a scaling parameter for this ADMM. The ADMM algorithm consists of the following iterations.

$$\begin{aligned}&{\mathbf{E}}^{k+1} = \arg \min _{{\mathbf{E}}} g_{3}'({\mathbf{E}})+ \rho \Vert {\mathbf{E}}-{\mathbf{B}}\Vert _{F}^{2}+\frac{\rho '}{2}\Vert {\mathbf{E}}-{\mathbf{F}}^{k}+{\mathbf{G}}^{k} \Vert _{F}^{2}, \end{aligned}$$
(47)
$$\begin{aligned}&{\mathbf{F}}^{k+1} = \arg \min _{{\mathbf{F}}} g_{3}({\mathbf{F}})+ \frac{\rho '}{2}\Vert {\mathbf{F}}-{\mathbf{E}}^{k+1}-{\mathbf{G}}^{k}\Vert _{F}^{2}, \end{aligned}$$
(48)
$$\begin{aligned}&{\mathbf{G}}^{k+1} = {\mathbf{G}}^{k}+{\mathbf{E}}^{k+1} - {\mathbf{F}}^{k+1}. \end{aligned}$$
(49)

The problem of Eq. (47) is equivalent to:

$$\begin{aligned} \begin{aligned}&{\mathbf{E}}^{k+1} = \arg \min _{{\mathbf{E}}}g_{3}'({\mathbf{E}})+ \\&\frac{2\rho +\rho '}{2}\Vert {\mathbf{E}}-\left( \frac{2\rho }{2\rho +\rho '}{\mathbf{B}}+\frac{\rho '}{2\rho +\rho '}({\mathbf{F}}^{k}-{\mathbf{G}}^{k}) \right) \Vert _{F}^{2}. \end{aligned} \end{aligned}$$
(50)

Equation (50) indicates projecting \(\big ( \frac{2\rho }{2\rho +\rho '}{\mathbf{B}}+\frac{\rho '}{2\rho +\rho '}({\mathbf{F}}^{k}- {\mathbf{G}}^{k}) \big )\) onto the set \({\mathcal {C}}'\). More specifically, we project the sub-matrices corresponding to \({\mathbf{W}}_{M}^{c,k}\) to be symmetric by the function \(f({\mathbf{W}}):=\frac{1}{2}({\mathbf{W}}+{\mathbf{W}}^{\top })\). \({\mathbf{G}}^{k}\) is initialized as zero matrix and it stays in \({\mathcal {C}}'\) during the updating of Eq. (49), therefore, \(({\mathbf{E}}^{k+1}+{\mathbf{G}}^{k})\in {\mathcal {C}}'\). Equation (48) indicates projecting \(\big ( {\mathbf{E}}^{k+1}+ {\mathbf{G}}^{k}\big )\) onto set \({\mathcal {C}}\). It needs to project the corresponding sub-matrices from \({\mathbb {S}}^{d}\) to \({\mathbb {S}}^{d}_{-}\). The projection can be efficiently obtained by cropping the positive eigenvalues to be zero (Boyd and Vandenberghe 2004).

We operate \(K=10\) iterations for the separated ADMM, and \({\mathbf{U}}_{3}^{l+1}\) is obtained by \({\mathbf{F}}^{K}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Yuan, Z., Wang, J. et al. Exemplar-Guided Similarity Learning on Polynomial Kernel Feature Map for Person Re-identification. Int J Comput Vis 123, 392–414 (2017). https://doi.org/10.1007/s11263-017-0991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-017-0991-0

Keywords

Navigation