Skip to main content
Log in

Configurable LDPC Decoder Architectures for Regular and Irregular Codes

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Low Density Parity Check (LDPC) codes are one of the best error correcting codes that enable the future generations of wireless devices to achieve higher data rates with excellent quality of service. This paper presents two novel flexible decoder architectures. The first one supports (3,6) regular codes of rate 1/2 that can be used for different block lengths. The second decoder is more general and supports both regular and irregular LDPC codes with twelve combinations of code lengths − 648,1296,1944-bits and code rates-1/2,2/3,3/4,5/6- based on the IEEE 802.11n standard. All codes correspond to a block-structured parity check matrix, in which the sub-blocks are either a shifted identity matrix or a zero matrix. Prototype architectures for both LDPC decoders have been implemented and tested on a Xilinx field programmable gate array.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Gallager, R. (1962). Low-density parity-check codes. IRE Transactions on Information Theory, 8, 21–28, January.

    Article  MathSciNet  Google Scholar 

  2. MacKay, D., & Neal, R. (1996). Near Shannon limit performace of low density parity check codes. In Electronic Letters, 32, 1645–6, August.

  3. Karkooti, M., & Cavallaro, J. R. (2004). Semi-parallel reconfigurable architectures for real-time LDPC decoding. In IEEE international conference on information technology: Coding and computing, ITCC 2004, April.

  4. IEEE 802.11 Wireless LANsWWiSE Proposal: High throughput extension to the 802.11 Standard. IEEE 11-04-0886- 00-000n.

  5. Chung, S., Richardson, T., & Urbanke, R. (2001). Analysis of sum-product decoding of low-density parity-check codes using a gaussian approximation. IEEE Transactions on Information Theory, 47, 657–670, February.

    Article  MATH  MathSciNet  Google Scholar 

  6. Chung, S., Forney, G., Richardson, T., & Urbanke, R. (2001). On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Communications Letters, 5, 58–60, February.

    Article  Google Scholar 

  7. Karkooti, M., Radosavljevic, P., & Cavallaro, J. R. (2006). Configurable high throughput irregular LDPC decoder architecture: Tradeoff analysis and implementation. In IEEE 17th international conference on application-specific systems, architectures and processors (ASAP) (pp. 360–367), September.

  8. Hocevar, D. E., (2004). A reduced complexity decoder architecture via layered decoding of LDPC codes. In IEEE workshop on signal processing systems, SIPS (pp. 107–112).

  9. Blanksby, A., & Howland, C. (2002). A 690-mW 1-Gbps 1024-b, Rate-1/2 low-density parity-check code decoder. Journal of Solid State Circuits, 37, 404–412, March.

    Article  Google Scholar 

  10. Zhang, T. (2002). Efficient VLSI architectures for error-correcting coding. PhD thesis, University of Minnesota, July.

  11. Mansour, M. M., & Shanbhag, N. R. (2003). High-throughput LDPC decoders. IEEE transactions on very large scale integration (VLSI) Systems, 11, 976–996, December.

    Google Scholar 

  12. Darabiha, A., Carusone, A. C., & Kschischang, F. R. (2005). Multi-Gbit/sec low density parity check decoders with reduced interconnect complexity. In IEEE international symposium on circuits and systems, ISCAS 2005, May.

  13. Kienle, F., Brack, T., & Wehn, N. (2005). A synthesizable IP core for DVB-S2 LDPC code decoding. In Proceedings of design, automation and test in Europe.

  14. Fanucci, L., Rovini, M., L’Insalata, N. E., & Rossi, F. (2005). High-throughput multi-rate decoding of structured low-density parity-check codes. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E88-A, 3539–3547, December.

  15. Yang, L., Lui, H., & Shi, C.-J. R. (2006). Code construction and FPGA implementation of a low-error-floor multi-rate low-density parity-check code decoder. IEEE Transactions on Circuits and Systems I, Regular Papers, 53, 892–904.

    Article  MathSciNet  Google Scholar 

  16. Gunnam, K., Weihuang, W., Kim, E., Choi, G., & Yeary, M. (2006). Decoding of array ldpc codes using on-the-fly computation. In IEEE asilomar conference on signals, systems and computers, November.

  17. Sun, Y., Karkooti, M., & Cavallaro, J. R. (2007). VLSI decoder architecture for high throughput, variable block-size and multi-rate LDPC codes. In IEEE international symposium on circuits and systems (ISCAS), May.

  18. Wang, Z., & Cui, Z. (2007). Low-complexity high-speed decoder design for quasi-cyclic LDPC codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15, 104–114.

    Article  Google Scholar 

  19. Masera, G., Quaglio, F., & Vacca, F. (2007). Implementation of a flexible LDPC decoder. IEEE Transactions on Circuits and Systems II: Express Briefs, 54, 542–546.

    Article  Google Scholar 

  20. Oh, D., & Parhi, K. (2007). Efficient highly-parallel decoder architecture for quasi-cyclic low-density parity-check codes. In IEEE international symposium on circuits and systems (ISCAS), May.

  21. Cui, Z., & Wang, Z. (2007). Efficient message passing architecture for high throughput LDPC decoder. In IEEE international symposium on circuits and systems (ISCAS), May.

  22. Sha, J., Gao, M., Zhang, Z., li, L., & Wang, Z. (2006). Efficient decoder implementation for QC-LDPC codes. In International conference on communications, circuits and systems (Vol. 4), June.

  23. Shimizu, K., Ishikawa, T., Togawa, N., Ikenaga, T., & Goto, S. (2006). A parallel LSI architecture for LDPC decoder improving message-passing schedule. In IEEE international symposium on circuits and systems (ISCAS), May.

  24. Zhu, Y., Chen, Y., Hocevar, D., & Goel, M. (2006). A reduced-complexity, scalable implementation of low density parity check (LDPC) decoder. In IEEE workshop on systems design and implementation and signal processing (SIPS) (pp. 83–880), October.

  25. Zhu, Y., & Chakrabarti, C. (2006). Aggregated circulant matrix based LDPC codes. In IEEE international conference on acoustics, speech and signal processing (ICASSP), May.

  26. Oh, D., & Parhi, K. (2006). Low complexity implementations of sum-product algorithm for decoding low-density parity-check codes. In IEEE workshop on signal processing systems design and implementation (SIPS) (pp. 262–267), October.

  27. Richardson, T., & Urbanke, R. (2001). Efficient encoding of low-density parity check codes. IEEE Transactions on Information Theory, 47, 638–656, February.

    Article  MATH  MathSciNet  Google Scholar 

  28. Heo, J. (2003). Analysis of scaling soft information on low density parity check codes. Electronics Letters, 39, 219–221, January.

    Article  Google Scholar 

  29. Chen, J., Dholakai, A., Eleftheriou, E., Fossorier, M., & Hu, X. (2005). Reduced-complexity decoding of LDPC codes. IEEE Transactions on Communications, 53, 1288–1299, August.

    Article  Google Scholar 

  30. Radosavljevic, P., de Baynast, A., & Cavallaro, J. R. (2005). Optimized message passing schedules for LDPC decoding. In IEEE 39th asilomar conference on signals, systems and computers (pp. 591–595), November.

  31. Mansour, M., & Shanbhag, N. (2002). Low power VLSI decoder architectures for LDPC codes. In Proc. of the int. symp. on low power electronics and design (pp. 284–289).

  32. Mao, Y., & Banihashemi, A. (2001). A heuristic search for good low-density parity-check codes at short block lengths. In IEEE Int. Conf. on Comm. (pp. 41–44), June.

  33. Chang, C., Kuusilinna, K., Richards, B., Chen, A., Chan, N., Brodersen, R. W., & Nikoliae, B. (2003). Rapid design and analysis of communication systems using the BEE hardware emulation environment. In 14th IEEE international workshop on rapid systems prototyping, June.

Download references

Acknowledgements

This work was supported in part by Nokia Corporation and by NSF under grants EIA-0321266, CCF-0541363, CNS-0551692 and CNS-0619767. We would like to thank Yang Sun for his help in ASIC synthesis. Also, we would like to thank the reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Karkooti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karkooti, M., Radosavljevic, P. & Cavallaro, J.R. Configurable LDPC Decoder Architectures for Regular and Irregular Codes. J Sign Process Syst Sign Image Video Technol 53, 73–88 (2008). https://doi.org/10.1007/s11265-008-0221-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0221-7

Keywords

Navigation