Skip to main content
Log in

Programmable Switched Capacitor Finite Impulse Response Filter with Circular Memory Implemented in CMOS 0.18 μm Technology

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper presents a programmable multi-mode finite impulse response (FIR) filter implemented as switched capacitor (SC) technique in CMOS 0.18 μm technology. Intended application of the described circuit is in analog base-band filtering in GSM/WCDMA systems. The proposed filter features a regular structure that allows for elimination of some parasitic capacitances, thus significantly improving the filtering accuracy. Due to its modularity that allows for dividing the circuit into two separate sections, the circuit can be easily reconfigured to work as either infinite impulse response (IIR) or as finite impulse (FIR) filter. One of the key components that allows for this multi-mode operation is the proposed programmable and ultra low power multiphase clock circuit. The 24-taps filter for the sampling frequency of 30 MHz dissipates power of 4.5 mW from a 1.8 V supply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. K. Iniewski (Ed.) (2007). Wireless Technologies: Circuits, Systems and Devices, CRC Press. ISBN:978-0849379963

  2. Mead, C. (1989). Analog VLSI and Neural Systems. Boston, MA, USA: Addison-Wesley.

    MATH  Google Scholar 

  3. Liu, S. C., Kramer, J., Indiveri, G., Delbrück, T., & Douglas, R. (2002). Analog VLSI: Circuits and Principles. Cambridge, MA: MIT.

    Google Scholar 

  4. Hosticka, B. (1985). Performance comparison of analog and digital circuits. Proceedings of the IEEE, 73, 25–29.

    Article  Google Scholar 

  5. Vittoz, E. (1990). Future of analog in the VLSI environment. IEEE International Circuit and Systems Conference ISCAS, 2, 1372–1375.

    Google Scholar 

  6. Burlingame, E., & Spencer, R. (2000). An analog CMOS high-speed continuous-time FIR filter. Proceedings of the 26’th European Solid-State Circuits Conference ESSCIRC, pp. 288–291.

  7. Długosz, R., & Iniewski, K. (2007). Flexible architecture of ultra-low-power current-mode interleaved successive approximation analog-to-digital converter for wireless sensor networks. paper accepted to Hindavi VLSI design.

  8. Alzaher, H. A., Elwan, H. O., & Ismail, M. (2002). A CMOS highly linear channel-select filter for 3G multistandard integrated wireless receivers. IEEE Journal of Solid-State Circuits, 37(n.1), 27–37.

    Article  Google Scholar 

  9. Hollman, T. (2001). A 2.7-V CMOS dual-mode baseband filter for PDC and WCDMA. IEEE Journal of Solid-State Circuits, 36(n.7), 1148–1153.

    Article  Google Scholar 

  10. Elwan, H., Ravindran, A., & Ismail, M. (2002). CMOS low power baseband chain for a GSM/DECT multistandard receiver. IEE Proceedings Circuits, Devices and Systems, 149(n.56), 337–347.

    Article  Google Scholar 

  11. Pavan, S., Tsividis, Y. P., & Nagaraj, K. (2000). Widely programmable high-frequency continuous-time filters in digital CMOS technology. IEEE Journal of Solid-State Circuits, 35(n.4), 503–511.

    Article  Google Scholar 

  12. Chamla, D., et al. (2005). A Gm-C low-pass filter for zero-IF mobile applications with a very wide tuning range. Journal of Solid-State Circuits, 40(n.7), 1443–1450.

    Article  Google Scholar 

  13. Bagheri, R. et al. (2006). An 800 MHz to 6 GHz software-defined radio receiver in 90 nm CMOS. International Solid-State Circuits Conference (ISSCC), pp. 480–481, February.

  14. Dąbrowski, A., Długosz, R., & Pawłowski, P. (2006). Integrated CMOS GSM baseband channel selecting filters realized using switched capacitor finite impulse response technique. Microelectronics Reliability Journal, 46, 949–958.

    Google Scholar 

  15. Allen, P., Sanchez-Sinencio, E., & Reinhold, V. (1984). Switched Capacitor Circuits. New York: Wiley.

    Google Scholar 

  16. Dąbrowski, A. (1997). Multirate and multiphase switched-capacitor circuits. London: Chapman & Hall.

    Google Scholar 

  17. Franca, J., & Dias, V. (1991). Systematic method for the design of multiamplifier switched-capacitor FIR decimator circuits. IEEE Proceedings-G, 138, 307–314.

    Google Scholar 

  18. Tsividis, Y. (1982). Signal processors with transfer function coefficients determined by timing. IEEE Transactions on Circuits and Systems, CAS, 29(12), 807–817.

    Google Scholar 

  19. Seng-Pan, U., Martins, R. P., & Franca, J. E. (2004). A 2.5-V 57-MHz 15-tap SC bandpass interpolating filter with 320-MS/s output for DDFS system in 0.35 um CMOS. IEEE Journal of Solid-State Circuits, 39(1), 87–99.

    Article  Google Scholar 

  20. Długosz, R., & Iniewski, K. (2008). Power and area efficient circular-memory switched-capacitor FIR baseband filter for WCDMA/GSM. International Symposium on Circuits and Systems (ISCAS), Seattle, USA, May.

  21. Bagheri, R., Mirzaei, A., Chehrazi, S., Heidari, M., Lee, M., Mikhemar, M., Tang, W. et al. (2006). An 800 MHz to 5 GHz software-defined radio receiver in 90 nm CMOS. International Solid State Circuit Conference (ISSCC).

  22. Wang, X., & Spencer, R. R. (1998). A low-power 170-MHz discrete-time analog FIR filter. IEEE Journal of Solid-State Circuits, 33(3), 417–426.

    Article  Google Scholar 

  23. Lee, Y.-S., & Martin, K. W. (1988). A switched-capacitor realization of multiple FIR filters on a single chip. IEEE Journal of Solid-State Circuits, 23(2), 536–542.

    Article  Google Scholar 

  24. Xu, D., Song, Y., & Uehara, G. T. (1996). A 200 MHz 9-Tap analog equalizer for magnetic disk read channels in 0.6 um CMOS. International Solid State Circuit Conference (ISSCC)

  25. KiriakiViswanathan, S. T. L., Feygin, G., Staszewski, B., Pierson, R., Krenik, B., et al. (1997). A 160-MHz analog equalizer for magnetic disk read channels. IEEE Journal of Solid-State Circuits, 32(11), 1839–1850.

    Article  Google Scholar 

  26. Toumazou, C., Moshytz, G., & Gilbert, B. (2002). Trade-Offs in Analog Circuit Design. New York: Kluwer.

    Book  Google Scholar 

  27. Cheung, Y. L., & Buchwald, A. (1997). A sampled-data switched-current analog 16-tap FIR filter with digitally programmable coefficients in 0.8 mm CMOS. IEEE International Solid-State Circuits Conference, 40, 54–55 and 129.

    Google Scholar 

  28. Farag, F. A., Galup-Montoro, C., & Schneider, M. C. (2000). Digitally programmable switched-current FIR filter for low-voltage applications. IEEE Journal of Solid-State Circuits, 35(4), 637–641.

    Article  Google Scholar 

  29. Długosz, R. (2005). New architecture of programmable SC FIR filter with circular memory. International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), Kraków, Poland.

  30. Fischer, G. (1990). Analog FIR filters by switched-capacitor techniques. IEEE Transactions on Circuits and Systems, CAS, 37(6), 808–814.

    Article  Google Scholar 

  31. Vaidyanathan, P. P. (1993). Multirate systems and filter banks. Englewood Cliffs, NJ: Pretence Hall.

    MATH  Google Scholar 

  32. Repo, H., & Rahkonen, T. (2003). Programmable switched capacitor 4-tap FIR filter. Proceedings of the 29 th European Solid-State Circuits Conference (ESSCIRC), pp. 445–448

  33. Guilar, N. J., Lau P.-K., Hurst, P. J., & Lewis, S. H. (2005). A 200 MS/s passive switched-capacitor FIR equalizer using a time-interleaved topology. Proceedings of the IEEE Custom Integrated Circuits Conference (CICC), pp. 633–636

  34. Carley, L. R., Bracken, K. C., Mittal, R., & Park, J. (1995). A low-power analog sampled-data VLSI architecture for equalization and FDTS/DF detection. IEEE Transactions on Magnetics, 31(2), 1202–1207.

    Article  Google Scholar 

  35. Długosz, R., & Iniewski, K. (2006). 0.35 mm 22 mW, “Multiphase Programmable Clock Generator for Circular Memory SC FIR Filter For Wireless Sensor Applications”, International Signal Processing Systems Conference (SIPS), Banff, Canada.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Długosz.

Additional information

Fellow of the Marie Curie Outgoing International Fellowship

Rights and permissions

Reprints and permissions

About this article

Cite this article

Długosz, R., Iniewski, K. Programmable Switched Capacitor Finite Impulse Response Filter with Circular Memory Implemented in CMOS 0.18 μm Technology. J Sign Process Syst Sign Image Video Technol 56, 295–306 (2009). https://doi.org/10.1007/s11265-008-0233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-008-0233-3

Keywords

Navigation