Skip to main content
Log in

Concurrent Error Detection in Multiplexer-Based Multipliers for Normal Basis of GF(2m) Using Double Parity Prediction Scheme

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Successful implementation of elliptic curve cryptographic systems primarily depends on the efficient and reliable arithmetic circuits for finite fields with very large orders. Thus, the robust encryption/decryption algorithms are elegantly needed. Multiplication would be the most important finite field arithmetic operation. It is much more complex compared to the finite field addition. It is also frequently used in performing point operations in elliptic curve groups. The hardware implementation of a multiplication operation may require millions of logic gates and may thus lead to erroneous outputs. To obtain reliable cryptographic applications, a novel concurrent error detection (CED) architecture to detect erroneous outputs in multiplexer-based normal basis (NB) multiplier over GF(2m) using the parity prediction scheme is proposed in this article. Although various NB multipliers, depending on \( \alpha \alpha^{{2^i }} = \sum\limits_{j = 0}^{m - 1} {t_{i,j} } \alpha^{{2^j }} \), have different time and space complexities, NB multipliers will have the same structure if they use a parity prediction function. By using the structure of the proposed CED NB multiplier, a CED scalable multiplier over composite fields with 100% error detection rate is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Online Available: http://www.csrc.nist.gov/publications.

  2. IEEE Standard 1363-2000, "IEEE Standard Specifications for Public-Key Cryptography," Jan. 2000.

  3. Nat'l Inst. of Standards and Technology, Digital Signature Standard, FIPS Publication 186-2, Jan. 2000.

  4. Huang, K. H., & Abraham, J. A. (1984). Algorithm-based fault tolerance for matrix operations. IEEE Transactions on Computers, 33(6), 518–522. doi:10.1109/TC.1984.1676475.

    Article  MATH  Google Scholar 

  5. Bayat-Sarmadi, S., & Hasan, M. A. (2007). On concurrent detection of errors in polynomial basis multiplication. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 15(4), 413–426. doi:10.1109/TVLSI.2007.893659.

    Article  Google Scholar 

  6. Chiou, C. W., Lee, C. Y., Deng, A. W., & Lin, J. M. (2006). Concurrent error detection in Montgomery multiplier over GF(2m). IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E89-A(2), 566–574. doi:10.1093/ietfec/e89-a.2.566.

    Article  Google Scholar 

  7. Fenn, S., Gossel, M., Benaissa, M., & Taylor, D. (1998). On-line error detection for bit-serial multipliers in GF(2m). Journal of Electronic Testing-Theory and Applications, 13, 29–40. doi:10.1023/A:1008333132366.

    Article  Google Scholar 

  8. Reyhani-Masoleh, A., & Hasan, M. A. (2006). Fault detection architectures for field multiplication using polynomial bases. IEEE Transactions on Computers, 55(9), 1089–1103. doi:10.1109/TC.2006.147.

    Article  Google Scholar 

  9. Lee, C. Y., Chiou, C. W., & Lin, J. M. (2005). Concurrent error detection in a bit-parallel systolic multiplier for dual basis of GF(2m). Journal of Electronic Testing-Theory and Applications, 21(5), 539–549. doi:10.1007/s10836-005-1053-z.

    Article  Google Scholar 

  10. Massey, J. L., & Omura, J. K. (1986). Computational Method and Apparatus for Finite Field Arithmetic,. Patent: U.S. 4.587.627, May 1986.

  11. Reyhani-Masoleh, A., & Hasan, M. A. (2002). A new construction of Massey-Omura parallel multiplier over GF(2m). IEEE Transactions on Computers, 51(5), 511–520. doi:10.1109/TC.2002.1004590.

    Article  MathSciNet  Google Scholar 

  12. Lu, C.-C. (1997). A search of minimal key functions for normal basis multipliers. IEEE Transactions on Computers, 46(5), 588–592. doi:10.1109/12.589230.

    Article  Google Scholar 

  13. Oh, S., Lim, C. H., & Cheon, D. H. (2000). Efficient normal basis multipliers in composite fields. IEEE Transactions on Computers, 49(10), 1133–1138. doi:10.1109/12.888054.

    Article  Google Scholar 

  14. Feisel, S., von zur Gathen, J., & Shokrollahi, M. (1999). Normal bases via general Gauss periods. Mathematics and Computations, 68, 271–290. doi:10.1090/S0025-5718-99-00988-6.

    Article  MATH  Google Scholar 

  15. Reyhani-Masoleh, A., & Hasan, M. A. (2005). Low complexity word-level sequential normal basis multipliers. IEEE Transactions on Computers, 54(2), 98–110. doi:10.1109/TC.2005.29.

    Article  Google Scholar 

  16. Menezes, A. J., Blake, I. F., Gao, X., Mullin, R. C., Vanstone, S. A., & Yaghoobian, T. (1993). Applications of finite fields. Kluwer international series in engineering and computer science. ISBN: 0-7923-9282-5.

  17. Gao, L., Sobelman, G. E. (2000). Improved VLSI designs for multiplication and inversion in GF(2m) over normal bases. Proc. 13th Ann. IEEE Int’l ASIC/SOC Conf. pp. 97–101.

  18. Bini, D. (1995). "Toeplitz matrices, algorithms and applications," ERCIM News, No.22, July 1995. Available online: http://www.ercim.org/publication/Ercim_News/enw22/teoplitz.html.

  19. Lee, C. Y., & Chiou, C. W. (2005). Efficient design of low-complexity bit-parallel systolic Hankel multipliers to implement multiplication in normal and dual bases of GF(2m). IEICE, Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E88-A(11), 3169–3179. doi:10.1093/ietfec/e88-a.11.3169.

    Article  Google Scholar 

  20. Pekmestzi, K. Z. (1999). Multiplexer-based array multipliers. IEEE Transactions on Computers, 48(1), 15–23. doi:10.1109/12.743408.

    Article  MathSciNet  Google Scholar 

  21. Sunar, B., & Koc, C. K. (2001). An efficient optimal normal basis type II multiplier. IEEE Transactions on Computers, 50(1), 83–88. doi:10.1109/12.902754.

    Article  MathSciNet  Google Scholar 

  22. Koc, C. K., & Sunar, B. (1998). Low-complexity bit-parallel canonical and normal multipliers for a class of finite fields. IEEE Trans Comput Vol, 47(3), 353–356.

    Article  MathSciNet  Google Scholar 

  23. Hasan, M. A., Wang, M. Z., & Bhargava, V. K. (1993). A modified Massey-Omura parallel multiplier for a class of finite fields. IEEE Transactions on Computers, 42(10), 1278–1280. doi:10.1109/12.257715.

    Article  Google Scholar 

  24. Galbraith, S. D., & Smart, N. (1999). A cryptographic application of Weil decent. In proceedings of the seventh IMA Conf. on cryptography and Coding, LNCS 1764, pp. 191–200. Springer-Verlag.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiou-Yng Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CY., Chiou, C.W. & Lin, JM. Concurrent Error Detection in Multiplexer-Based Multipliers for Normal Basis of GF(2m) Using Double Parity Prediction Scheme. J Sign Process Syst Sign Image Video Technol 58, 233–246 (2010). https://doi.org/10.1007/s11265-009-0361-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-009-0361-4

Keywords

Navigation