Skip to main content
Log in

Impact of Approximation Error on the Decisions of LDPC Decoding

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

In this paper the impact of the approximation error on the decisions taken by LDPC decoders is studied. In particular, we analyze the mechanism, by means of which approximation error alters the decisions of a finite-word-length implementation of the decoding algorithm, with respect to the decisions taken by the infinite precision case, approximated here by double-precision floating-point. We focus on four popular algorithms for LDPC decoding, namely Log Sum-Product, Min-Sum, normalized Min-Sum and offset Min-Sum. A corresponding theoretical model is developed which derives an expression for the probability of altering the decision due to approximation. The model is applied to the above algorithms for the case of the first iteration as well as for higher numbers of iterations. Finally, experimental results prove the validity of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22

Similar content being viewed by others

References

  1. Gallager, R. G. (1962). Low-density parity-check codes. IRE Transactions on Information Theory, IT-8, 21–28

    Article  MathSciNet  Google Scholar 

  2. IEEE 11-04-0889-06-000n (2005). IEEE P802.11 wireless LANs WWiSE Proposal: TGnSync Proposal Technical Specification.

  3. IEEE Std 802.16e 2005 (2006). IEEE Std 802.16e-2005 and IEEE Std 802.16-2004/Cor 1-2005 (Amendment and Corrigendum to IEEE Std 802.16-2004.

  4. Chung, Jr., S.-Y., Forney, G. D., Richardson, T. J., & Urbanke, R. (2001). On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Communications Letters, 5(2), 58–60.

    Article  Google Scholar 

  5. MacKay, D. J. C. (1999). Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory, 45(2), 399–431.

    Article  MathSciNet  MATH  Google Scholar 

  6. Masera, G., Quaglio, F., & Vacca, F. (2007). Implementation of a flexible LDPC decoder. IEEE Transactions on Circuits and Systems II: Express Briefs, 54(6), 542–546.

    Article  Google Scholar 

  7. Mansour, M. M., & Shanbhag, N. R. (2003). High-throughput LDPC decoders. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 11(6), 976–996.

    Article  Google Scholar 

  8. Gunnam, K. K., Choi, G. S., Yeary, M. B., & Atiquzzaman, M. (2007). VLSI architectures for layered decoding for irregular LDPC codes of WiMax. In Proceedings of IEEE international conference on communications ICC (pp. 4542–4547).

  9. Sun, Y., & Cavallaro, J. R. (2008). A low-power 1-Gbps reconfigurable LDPC decoder design for multiple 4G wireless standards. In Proceedings of IEEE international SOC conference (pp. 367–370).

  10. Zhang, K., Huang, X., & Wang, Z. (2009). High-throughput layered decoder implementation for quasi-cyclic LDPC codes. IEEE Journal on Selected Areas in Communications, 27(6), 985–994.

    Article  Google Scholar 

  11. Guillou, F., Boutillon, E., & Danger, J.-L. (2003). Lambda-Min Decoding Algorithm of Regular and Irregular LDPC Codes. In Proceedings of 3rd international symposium on turbo codes & related topics. Brest France.

  12. Oh, D., & Parhi, K. K. (2010). Min-Sum decoder architectures with reduced word length for LDPC codes. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(1), 105–115.

    Article  Google Scholar 

  13. Zhang, Z., Dolecek, L., Wainwright, M., Anantharam, V., & Nikolic, B. (2007). Quantization effects in Low-Density Parity-Check decoders. In Proceedings of IEEE international conference on communications ICC (pp. 6231–6237).

  14. Richardson, T. J., & Urbanke, R. L. (2001). The capacity of Low-Density Parity-Check codes under Message-Passing decoding. IEEE Transactions on Information Theory, 47(2), 599–618.

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, J., Dholakia, A., Eleftheriou, E., Fossorier, M. P. C., & Hu, X.-Y. (2005). Reduced-complexity decoding of LDPC codes. IEEE Transactions on Communications, 53(8), 1288–1299.

    Article  Google Scholar 

  16. Kanistras, N., & Paliouras, V. (2008). Impact of roundoff errors in LDPC decoding. In Proceedings of 3rd international symposium on wireless pervasive computing ISWPC (pp. 646–650).

  17. Kanistras, N., & Paliouras, V. (2008). Impact of roundoff error on the decisions of the log sum-product algorithm for LDPC decoding. In Proceedings of IEEE workshop on signal processing systems SiPS (pp. 100–105).

    Google Scholar 

  18. Chiani, M., Conti, A., & Ventura, A. (2000). Evaluation of low-density parity-check codes over block fading channels. In Proceedings of IEEE international conference on proceedings of communications ICC (Vol. 3, pp. 1183–1187).

  19. Zhang, T., & Parhi, K. K. (2004). Joint (3,k)-regular LDPC code and decoder/encoder design. IEEE Transactions on Signal Processing, 52(4), 1065–1079.

    Article  MathSciNet  Google Scholar 

  20. Wiberg, N. (1996). Codes and decoding on general graphs. Ph.D. thesis, Department of Electrical Engineering, Linköping University, Sweden.

  21. Chen, J., & Fossorier, M. P. C. (2002). Near optimum universal belief propagation based decoding of Low-Density Parity Check codes. IEEE Transactions on Communications, 50(3), 406–414.

    Article  Google Scholar 

  22. Chen, J., & Fossorier, M. P. C. (2002). Density evolution for two improved BP-based decoding algorithms of LDPC codes. IEEE Communications Letters, 6(5), 208–210.

    Article  Google Scholar 

  23. Glikiotis, G., & Paliouras, V. (2005). A low-power termination criterion for iterative LDPC code decoders. In Proceedings of IEEE workshop on signal processing systems design and implementation SiPS (pp. 122–127).

  24. Wang, W., & Choi, G. (2007). Speculative energy scheduling for LDPC decoding. In Proceedings of 8th international symposium on quality electronic design ISQED (pp. 79–84).

  25. Masera, G., Quaglio, F., & Vacca, F. (2005). Finite precision implementation of LDPC decoders. IEE Proceedings Communications, 152(6), 1098–1102.

    Article  Google Scholar 

  26. Oh, D., & Parhi, K. K. (2006). Low complexity implementations of Sum-Product algorithm for decoding Low-Density Parity-Check codes. In Proceedings of IEEE workshop on signal processing systems design and implementation SIPS (pp. 262–267).

  27. Zhang, T., Wang, Z., & Parhi, K. K. (2001). On finite precision implementation of Low Density Parity Check codes decoder. In Proceedings of IEEE international symposium on circuits and systems ISCAS (Vol. 4, pp. 202–205).

  28. Papoulis, A. (1991). Probability, random v ariables and stochastic p rocesses (3rd ed.). New York: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgement

The authors would like to acknowledge the support by the University of Patras through the “C. Caratheodory” project under contract No.B-701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Kanistras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanistras, N., Paliouras, V. Impact of Approximation Error on the Decisions of LDPC Decoding. J Sign Process Syst 64, 41–59 (2011). https://doi.org/10.1007/s11265-010-0485-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-010-0485-6

Keywords

Navigation