Skip to main content

Advertisement

Log in

Color-Aware Instructions for Embedded Superscalar Processors

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

This paper introduces a color-aware instruction set extension that enhances the performance and efficiency in the processing of color images and video. Traditional multimedia extensions (e.g., MMX, VIS, and MDMX) depend solely on generic subword parallelism whereas the proposed color-aware instruction set (CAX) supports parallel operations on two-packed 16-bit (6:5:5) YCbCr (luminance-chrominance) values. A 16-bit YCbCr representation reduces storage requirements by 33% over the baseline 24-bit YCbCr representation while maintaining satisfactory image quality. Experimental results on an identically configured, dynamically scheduled superscalar processor indicate that CAX outperforms MDMX (a representative MIPS multimedia extension) in terms of speedup (3.9× baseline ISA with CAX versus 2.1× with MDMX) and energy reduction (75.8% reduction over baseline with CAX versus 54.8% reduction with MDMX). CAX can improve the performance and efficiency of future embedded color imaging products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Jennings, M. D., & Coate, T. M. (1998). Subword extensions for video processing on mobile systems. IEEE Concurrency, 6(3), 13–16.

    Article  Google Scholar 

  2. Kim, J., Wills, L. M., & Wills, D. S. (2005). Effective detection and elimination of impulse noise for reliable 4:2:0 YCbCr signals prior to compression encoding. In Proceedings of the 30th IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 2, pp. 1005–1008.

  3. Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing (3rd ed.). Upper Saddle River: Prentice Hall.

    Google Scholar 

  4. Tremeau A., Plataniotis K., & Tominaga S. (2008). Color in Image and Video Processing, special issue of EURASIP Journal on Image and Video Processing. Hindawi Publishing Corporation.

  5. Plataniotis, K. N., & Venetsanopoulos, A. N. (2000). Color image processing and applications. New York: Springer Verlag.

    Google Scholar 

  6. Koschan, A. (1995). A comparative study on color edge detection. In Proc. of the 2nd Asian Conference on Computer Vision, vol. III, pp. 574–578.

  7. Lukac, R., & Plataniotis, K. N. (2006). Color image processing: methods and applications. Boca Raton: Taylor & Francis.

    Book  Google Scholar 

  8. Peleg, A., & Weiser, U. (1996). MMX technology extension to the Intel architecture. IEEE Micro, 16(4), 42–50.

    Article  Google Scholar 

  9. Tremblay, M., O’Connor, J. M., Narayanan, V., & He, L. (1996). VIS speeds new media processing. IEEE Micro, 16(4), 10–20.

    Article  Google Scholar 

  10. MIPS Extension for Digital Media with 3D. (1997). Technical Report, MIPS Technologies, Inc., Available online at http://www.iuma.ulpgc.es/∼nunez/procesadoresILP/isa5_tech_brf.pdf.

  11. Dongarra, J. J., & Hinds, A. R. (1979). Unrolling loops in Fortran. Software-Practice and Experience, 9(3), 219–226.

    Article  MATH  Google Scholar 

  12. Raman, S. K., Pentkovski, V., & Keshava, J. (2000). Implementing streaming SIMD extensions on the Pentium III processor. IEEE Micro, 20(4), 28–39.

    Article  Google Scholar 

  13. Lee, R. B. (1996). Subword parallelism with MAX-2. IEEE Micro, 16(4), 51–59.

    Article  Google Scholar 

  14. Nguyen, H., & John, L. (1999). Exploiting SIMD parallelism in DSP and multimedia algorithms using the AltiVec technology. In Proc. Intl. Conf. on Supercomputer, pp. 11–20.

  15. Shahbahrami, A., Juurlink, B., & Vassiliadis S. (2008). Versatility of extended subwords and the matrix register file. ACM Transactions on Architecture and Code Optimization (TACO), 5(1), Article 5:1–5:30.

    Google Scholar 

  16. Chiu, J.-C., Chou, Y.-L., & Tzeng, H.-Y. (2009). A multi-streaming SIMD architecture for multimedia applications. In Proceedings of the 6th ACM conference on Computing frontiers, pp. 51–60.

  17. Talla, D., John, L. K., & Burger, D. (2003). Bottlenecks in multimedia processing with SIMD style extensions and architectural enhancements. IEEE Transactions on Computers, 52(8), 1015–1031.

    Article  Google Scholar 

  18. Slingerland, N., & Smith, A. J. (2002). Measuring the performance of multimedia instruction sets. IEEE Transactions on Computers, 51(11), 1317–1332.

    Article  MathSciNet  Google Scholar 

  19. Wang, Y., Ostermann, J., & Zhang, Y.-Q. (2002). Video processing and communications. Englewood cliffs: Prentice Hall.

    Google Scholar 

  20. Kim, J., & Wills, D. S. (2004). Efficient processing of color image sequences using a color-aware instruction set on mobile systems. In Proc. of the IEEE Intl. Conf. on Application-Specific Systems, Architectures, and Processors, pp. 137–149.

  21. Koenen, R. (2000). Coding of moving pictures and audio: MPEG-4 overview. Available online at http://www.itu.int/ITU-D/tech/digital-broadcasting/kiev/References/mpeg-4.html, International Organization for Standardization, ISO/IEC JTC1/SC29/WG11, Beijing.

  22. Tom, B. C., & Katsaggelos, A. K. (2001). Resolution enhancement of monochrome and color video using motion compensation. IEEE Transactions on Image Processing, 10(2), 278–287.

    Article  MATH  Google Scholar 

  23. Astola, J., Haavisto, P., & Neuvo, Y. (1990). Vector median filters. Proceedings of the IEEE, 78(4), 678–689.

    Article  Google Scholar 

  24. Kim, J., & Wills, D. S. (2005). Evaluating a 16-bit YCbCr (6:5:5) color representation for low memory, embedded video processing. In Proceedings of the IEEE International Conference on Consumer Electronics, pp. 181–182.

  25. Barnett, B. (2000). In A. Bovik (Ed.), Handbook of image processing. New York: Academic Press.

    Google Scholar 

  26. Kim, J., Wills, D. S., & Wills, L. M. (2005). Architectural enhancements for color image and video processing on embedded systems. In Proceedings of Asia-Pacific Computer Systems Architecture Conference, pp. 104–117.

  27. Suh, J., & Prasanna, V. K. (2002). An efficient algorithm for out-of-core matrix transposition. IEEE Transactions on Computers, 51(4), 420–438.

    Article  MathSciNet  Google Scholar 

  28. Kim, J., & Wills, D. S. (2002). Impulse noise removal on an embedded, low memory SIMD processor. In Proceedings of the IEEE International Conference on Digital Signal Processing, pp. 1257–1260.

  29. Gersho, A., & Gray, R. M. (1992). Vector quantization and signal compression. Dordrecht: Kluwer Academic.

    MATH  Google Scholar 

  30. Austin, T., Larson, E., & Ernst, D. (2002). SimpleScalar: an infrastructure for computer system modeling. Computer, 35(2), 59–67.

    Article  Google Scholar 

  31. Brooks, D., Tiwari, V., & Martonosi, M. (2000). Wattch: A framework for architectural-level power analysis and optimizations. In Proceedings of the IEEE International Symposium on Computer Architecture, pp. 83–94.

  32. Tiwari, V., Malik, S., & Wolfe, A. (1994). Compilation techniques for low energy: An overview. In Proceedings of the IEEE International Symposium on Low Power Electronics, pp. 38–39.

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2010-0010863).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongmyon Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Wills, L.M. & Wills, D.S. Color-Aware Instructions for Embedded Superscalar Processors. J Sign Process Syst 64, 335–350 (2011). https://doi.org/10.1007/s11265-010-0497-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-010-0497-2

Keywords

Navigation