Skip to main content
Log in

Fixed-Interval Kalman Smoothing Algorithms in Singular State–Space Systems

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Fixed-interval Bayesian smoothing in state–space systems has been addressed for a long time. However, as far as the measurement noise is concerned, only two cases have been addressed so far : the regular case, i.e., with positive definite covariance matrix; and the perfect measurement case, i.e., with zero measurement noise. In this paper we address the smoothing problem in the intermediate case where the measurement noise covariance is positive semi definite with arbitrary rank. We exploit the singularity of the model in order to transform the original state–space system into a pairwise Markov model with reduced state dimension. Finally, the a posteriori Markovianity of the reduced state enables us to propose a family of fixed-interval smoothing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Notes

  1. The independence assumptions in this paper come from our choice to adopt the Bayesian point of view and next derive our smoothing algorithms by injecting the Gaussian assumption. Alternately, we could of course have assumed that the independent processes are uncorrelated only, and derive our algorithms as recursive linear minimum mean square error (MMSE) restoration procedures.

References

  1. Bryson, A. E., & Frazier, M.(1963). Smoothing for linear and non-linear dynamic systems (pp. 353–364). Tech. Rep., Aero. Syst. Dvi. Wrigth-Patterson Air Force Base.

  2. Rauch, H. E. (1963). Solutions to smoothing problem. IEEE Transactions on Automatic Control, 8, 371–372.

    Article  Google Scholar 

  3. Rauch, H. E., Tung, F., & Striebel, C. T. (1965). Maximum likelihood estimates of linear dynamic systems. AIAA Journal, 3(8), 1445–1450.

    Article  MathSciNet  Google Scholar 

  4. Meditch, J. S. (1967). Orthogonal projection and discrete optimal linear smoothing. SIAM Journal on Control, 5, 74–89.

    Article  MathSciNet  MATH  Google Scholar 

  5. Kailath, T., & Frost, P.(1968). An innovations approach to least squares estimation, part II: Linear smoothing in additive white noise. IEEE Transactions on Automatic Control, 13, 655–660.

    Article  MathSciNet  Google Scholar 

  6. Mayne, D. Q. (1966). A solution to the smoothing problem for linear dynamical systems. Automatica, 4, 73–92.

    Article  MATH  Google Scholar 

  7. Fraser, D. C., & Potter, J. E. (1969). The optimum linear smoother as a combination of two optimum linear filters. IEEE Transactions on Automatic Control, 7, 387–90.

    Article  MathSciNet  Google Scholar 

  8. Weinert, H. L. (2001). Fixed interval smoothing for state–space models. In The Kluwer international series in engineering and computer science. Boston: Kluwer.

    Google Scholar 

  9. Lee, R. C. K. (1964). Optimal estimation: Identification and control. Cambridge: MIT Press.

    MATH  Google Scholar 

  10. Askar, M., & Derin, H. (1981). A recursive algorithm for the Bayes solution of the smoothing problem. IEEE Transactions on Automatic Control, 26, 558–560.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kailath, T., Sayed, A. H., & Hassibi, B. (2000). Linear estimation. In Prentice Hall information and system sciences series. Upper Saddle River: Prentice Hall.

    Google Scholar 

  12. Cappé, O., Moulines, E., & Rydén, T. (2005). Inference in hidden Markov models. Springer.

  13. Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering. Transactions of the ASME, Series D, 82(1), 35–45.

    Google Scholar 

  14. Harvey, A. C. (1989). Forecasting, structural time series models and the Kalman filter. Cambridge University Press.

  15. Mehra, R., & Bryson, A. E. Jr. (1968). Linear smoothing using measurements containing correlated noise with an application to inertial navigation. IEEE Transactions on Automatic Control, 13(5), 496–503.

    Article  Google Scholar 

  16. Anderson, B. D. O., & Moore, J. B. (1979). Optimal filtering, Englewood Cliffs: Prentice Hall.

    MATH  Google Scholar 

  17. Maybeck, P. S. (1979). Stochastic models, estimation and control (Vol. 1). New York: Academic Press.

    MATH  Google Scholar 

  18. Bryson, A. E., & Ho, Y. C. (1975). Applied o ptimal control. New York: Hemisphere.

    Google Scholar 

  19. Jazwinski, A. H. (1970). Stochastic processes and filtering theory. In Mathematics in science and engineering (Vol. 64). San Diego: Academic.

    Google Scholar 

  20. Bryson, A. E. Jr., & Henrikson, L. J. (1968). Estimation using sampled data containing sequentially correlated noise. Journal of Spacecraft and Rockets, 5, 662–665.

    Article  Google Scholar 

  21. Doblinger, G. (1998). Smoothing of AR signals using an adaptive Kalman filter. In Proceedings of the European signal processing conference (EUSIPCO 98) (Vol. 2, pp. 781–784).

  22. Shukla, V. (1973). Estimation in linear time-delay system with coloured observation noise. IEEE Electronics Letters, 9(1), 1–2.

    Article  Google Scholar 

  23. Biswas, K., & Mahalanabis, A. (1972). Optimal fixed lag smoothing for time delayed system with colored noise. IEEE Transactions on Automatic Control, 17(3), 387–388.

    Article  Google Scholar 

  24. Spyros, G. T. (1972). On optimum distributed-parameter filtering and fixed-interval smoothing for colored noise. IEEE Transactions on Automatic Control, 17(4), 448–458.

    Article  MATH  Google Scholar 

  25. Chui, C. K., & Chen, G. (1999). Kalman filtering with real-time applications. Berlin: Springer.

    Google Scholar 

  26. Ho, Y. C., & Lee, R. C. K. (1964). A Bayesian approach to problems in stochastic estimation and control. IEEE Transactions on Automatic Control, 9, 333–339.

    Article  MathSciNet  Google Scholar 

  27. Ait-El-Fquih, B., & Desbouvries, F. (2008). On Bayesian fixed-interval smoothing algorithms. IEEE Transactions on Automatic Control, 53(10), 2437–2442.

    Article  MathSciNet  Google Scholar 

  28. Pieczynski, W. (2003). Pairwise Markov chains. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5), 634–639.

    Article  Google Scholar 

  29. Pieczynski, W., & Desbouvries, F. (2003). Kalman filtering using pairwise Gaussian models. In Proceedings of the international conference on acoustics, speech and signal processing (ICASSP 03). Hong-Kong.

  30. Desbouvries, F., & Pieczynski, W. (2003). Particle filtering in pairwise and triplet Markov chains. In Proc. IEEE—EURASIP workshop on nonlinear signal and image processing, Grado-Gorizia, Italy, June 8–11 2003.

  31. Ait-El-Fquih, B., & Desbouvries, F. (2006). Unsupervised signal restoration in partially observed Markov chains. In Proceedings of the international conference on acoustics, speech and signal processing (ICASSP 06), Toulouse, France, 15–19 May 2006.

  32. Ait el Fquih, B., & Desbouvries, F. (2006). Exact and approximate Bayesian smoothing algorithms in partially observed Markov chains. In Proceedings of the IEEE nonlinear statistical signal processing workshop (NSSPW’06), Cambridge, UK, 13–15 September 2006.

  33. Lipster, R. S., & Shiryaev, A. N. (2001). Statistics of random processes, Vol. 2: Applications (Chapter 13). In Conditionally Gaussian sequences: Filtering and related problems. Berlin: Springer.

    Google Scholar 

  34. Cox, H. (1964). On the estimation of state variables and parameters for noisy dynamic systems. IEEE Transactions on Automatic Control, 9(1), 5–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Desbouvries.

Appendix A

Appendix A

1.1 A.1 Some Useful Results for Gaussian Variables

The proof of Proposition 6 is based on the following two classical results on Gaussian variables.

Proposition 8

Let \(p({\bf x})\! \sim \!{\cal N}\! (\widehat{\bf x} ,\! {\bf P}_{x})\) and \(p({\bf y}|{\bf x})\! \sim \!{\cal N} \!({\bf A} {\bf x}\, +\) b, P y|x ). Then

$$ p({\bf x} , {\bf y}) \sim {\cal N} \left( \left[ \begin{array}{c} \widehat{\bf x} \\ {\bf A} \widehat{\bf x} + {\bf b} \end{array} \right] , \left[ \begin{array}{cc} {\bf P}_x & \ \ {\bf P}_x {\bf A}^T \\ {\bf A} {\bf P}_x &\ \ {\bf A} {\bf P}_x {\bf A}^T + {\bf P}_{y|x} \end{array} \right]\right) . $$

Proposition 9

Let  \(p({\bf x}, {\bf y})\, \sim \,{\cal N} \left(\, \left[ \begin{array}{c} \widehat{\bf x} \\ \widehat{\bf y} \end{array} \right] , \left[ \begin{array}{cc} {\bf P}_x \,\,{\bf P}_{x,y} \\ {\bf P}_{y,x} \,\,{\bf P}_y \end{array} \right]\, \right)\) . Then

$$ p({\bf x}|{\bf y}) \sim {\cal N} \left(\widehat{\bf x} + {\bf P}_{x,y} {\bf P}_{y}^{-1} ({\bf y} - \widehat{\bf y}\,) , {\bf P}_x - {\bf P}_{x,y} {\bf P}_{y}^{-1} {\bf P}_{y,x} \right). $$

1.2 A.2 Proof of Proposition 6

Let us address the calculation of Eqs. 22 and 23. First, from Eq. 14 we have

$$ \begin{array}{rll} &&{\kern-6pt}p(\underbrace{({\bf x}_{n+1} , {\bf y}_{n+1})}_{{\bf z}_{n+1}}|{\bf z}_n)\notag\\ &&{\kern6pt}\sim {\cal N} \left(\left[ \begin{array}{ll} \overline{{\cal F}}_{n}^{\overline{\bf x},\overline{\bf x}} &\,\, \overline{{\cal F}}_{n}^{\overline{\bf x},\overline{\bf y}} \\ \overline{{\cal F}}_{n}^{\overline{\bf y},\overline{\bf x}} &\,\, \overline{{\cal F}}_{n}^{\overline{\bf y},\overline{\bf y}} \cr \end{array} \right] \left[ \begin{array}{l} \overline{{\bf x}}_{n} \\ \overline{\bf y}_{n} \end{array} \right] , \left[ \begin{array}{ll} \overline{\bf Q}_n &\,\, \overline{\bf S}_n \\ (\overline{\bf S}_n)^T &\,\, \overline{\bf R}_n \end{array} \right] \right) , \end{array} $$
(62)

and by using Proposition 9 we get

$$ \begin{array}{lll} p({\bf x}_{n+1}|{\bf z}_n, {\bf y}_{n+1}) & = &p({\bf x}_{n+1}|{\bf x}_n, {\bf y}_{0:n+1}) \\ & \sim &{\cal N}\Bigg( \underbrace{\left[\overline{{\cal F}}_{n}^{\overline{\bf x},\overline{\bf x}} - \overline{\bf S}_n (\overline{\bf R}_n)^{-1} \overline{{\cal F}}_{n}^{\overline{\bf y},\overline{\bf x}} \right]}_{{\bf A}_n} {\bf x}_n \\ &&{\kern20pt}+\, \underbrace{\left[\overline{{\cal F}}_{n}^{\overline{\bf x},\overline{\bf y}} - \overline{\bf S}_n (\overline{\bf R}_n)^{-1} \overline{{\cal F}}_{n}^{\overline{\bf y},\overline{\bf y}} \right]}_{{\bf B}_n} {\bf y}_n \\ \label{transition-Gauss} && {\kern20pt}+\, \overline{\bf S}_n (\overline{\bf R}_n)^{-1} {\bf y}_{n+1} ,\\ &&{\kern20pt}\underbrace{\left[ \overline{\bf Q}_n - \overline{\bf S}_n (\overline{\bf R}_n)^-1 (\overline{\bf S}_n)^T \right]}_{{\bf C}_n} \Bigg) \end{array} $$
(63)

(the first equality holds because (x n , y n ) is an MC). On the other hand,

$$ \widetilde{\alpha}_n = p({\bf x}_{n}|{\bf y}_{0:n+1}) \sim {\cal N}(\,\widehat{\bf x}_{n|0:n+1} , {\bf P}_{n|0:n+1}) . $$
(64)

Applying Proposition 8 to Eqs. 63 and 64 we get

$$ \begin{array}{rll} &&{\kern-6pt} p({\bf x}_{n} , {\bf x}_{n+1}|{\bf y}_{0:n+1})\\ && \sim \,{\cal N} \left(\left[ \begin{array}{c} \widehat{\bf x}_{n|0:n+1} \\ {\bf A}_n \widehat{\bf x}_{n|0:n+1} + {\bf B}_n {\bf y}_n + \overline{\bf S}_n (\overline{\bf R}_n)^{-1} {\bf y}_{n+1} \end{array} \right]\right.,\\ \label{pxnxn} & &{\kern8pt} \left.\left[ \begin{array}{cc} {\bf P}_{n|0:n+1} &\,\, {\bf P}_{n|0:n+1} {\bf A}_n^T \\ {\bf A}_n {\bf P}_{n|0:n+1} &\,\, {\bf A}_n {\bf P}_{n|0:n+1} {\bf A}_n^T + {\bf C}_n \end{array} \right] \right) . \end{array} $$
(65)

Applying Proposition 9 in Eq. 65, and observing that conditionnally on (x n + 1 , y 0:n + 1), x n and y n + 2:N are independent, we get

$$ \begin{array}{rll} \nonumber &&{\kern-6pt} p({\bf x}_n|{\bf x}_{n+1}, {\bf y}_{0:N}) \\ &&{\kern4pt}\sim \Bigg(\widehat{\bf x}_{n|0:n+1} + \underbrace{{\bf P}_{n|0:n+1} {\bf A}_n^T {\bf P}_{n+1|0:n+1}^{-1}}_{{\bf K}_{n|0:N}} ({\bf x}_{n+1} - \widehat{\bf x}_{n+1|0:n+1}), \\ \label{pxn|xn+1,y_{0:N}} &&{\kern28pt}{\bf P}_{n|0:n+1} - {\bf P}_{n|0:n+1} {\bf A}_n^{T} {\bf P}_{n+1|0:n+1}^{-1} {\bf A}_n {\bf P}_{n|0:n+1}\Bigg). \end{array} $$
(66)

from which we get formula 45 for the Kalman smoothing gain K n|0:N . Injecting Eq. 66 in Eq. 22 and using Proposition 8 again we eventually get Eqs. 46 and 47.

1.3 A.3 Proof of Proposition 7

Injecting Eq. 45 in Eqs. 46 and 47 leads respectively to:

$$ \begin{array}{rll} \widehat{\bf x}_{n|0:N} & = & \widehat{\bf x}_{n|0:n+1} \nonumber\\ &&+\, {\bf P}_{n|0:n+1} \Bigg[ \underbrace{\overline{{\cal F}}_{n}^{\overline{\bf x},\overline{\bf x}} - \overline{\bf S}_n (\overline{\bf R}_n)^{-1} \overline{{\cal F}}_{n}^{\overline{\bf y},\overline{\bf x}}}_{{\bf A}_n} \Bigg]^T \lambda_{n+1} , \end{array} $$
(67)
$$ {\bf P}_{n|0:N} = {\bf P}_{n|0:n+1} - {\bf P}_{n|0:n+1} {\bf A}_n^T \Lambda_{n+1} {\bf A}_n {\bf P}_{n|0:n+1}. $$
(68)

On the other hand, from Eqs. 40 and 42 we get

$$ {\bf P}_{n|0:n+1} {\bf A}_n^T = {\bf P}_{n|0:n} \big({\bf K}_n^{\lambda}\big)^T. $$
(69)

Injecting Eq. 69 in Eqs. 67 and 68 leads respectively to Eqs. 51 and 52.

It remains to show Eqs. 55 and 56. Injecting Eq. 51 in Eqs. 52 and 53 in Eq. 54 leads respectively to:

$$ \lambda_n = \big({\bf K}_n^{\lambda}\big)^T \lambda_{n+1} + {\bf P}_{n|0:n}^{-1} \big[\,\widehat{\bf x}_{n|0:n+1} - {\widehat{\bf x}}_{n|0:n}\big] $$
(70)
$$ \label{Lambda_n-proof} \Lambda_n = \big({\bf K}_n^{\lambda}\big)^T\! \Lambda_{n+1} {\bf K}_n^{\lambda} + {\bf P}_{n|0:n}^{-1} \big[{\bf P}_{n|0:n}\! -\! {\bf P}_{n|0:n+1}\big] {\bf P}_{n|0:n}^{-1}. $$
(71)

Finally injecting Eqs. 40 and 41 in Eq. 70 we get Eq. 55, and injecting Eqs. 40 and 42 in Eq. 71 we get Eq. 56.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ait-El-Fquih, B., Desbouvries, F. Fixed-Interval Kalman Smoothing Algorithms in Singular State–Space Systems. J Sign Process Syst 65, 469–478 (2011). https://doi.org/10.1007/s11265-010-0532-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-010-0532-3

Keywords

Navigation