Skip to main content
Log in

Design of Sparse Filters for Channel Shortening

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Channel shortening equalizers are used in acoustics to reduce reverberation, in error control decoding to reduce complexity, and in communication receivers to reduce inter-symbol interference. The cascade of a channel and channel shortening equalizer ideally produces an overall impulse response that has most of its energy compacted into fewer adjacent samples. Once designed, channel shortening equalizers filter the received signal on a per-sample basis and need to be adapted or re-designed if the channel impulse response changes significantly. In this paper, we evaluate sparse filters as channel shortening equalizers. Unlike conventional dense filters, sparse filters have a small number of non-contiguous non-zero coefficients. Our contributions include (1) proposing optimal and sub-optimal low complexity algorithms for sparse shortening filter design, and (2) evaluating impulse response energy compaction vs. design and implementation stage computational complexity tradeoffs for the proposed algorithms. We apply the proposed equalizer design procedures to (1) asymmetric digital subscriber line channels and (2) underwater acoustic communication channels. Our simulation results utilize measured channel impulse responses and show that sparse filters are able to achieve the same channel energy compaction with half as many coefficients as dense filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Wu, M., & Wang, D. (2006). A two-stage algorithm for one-microphone reverberant speech enhancement. IEEE Transactions on Audio, Speech, and Language Processing, 14(3), 774–784.

    Article  Google Scholar 

  2. Bingham, J. A. C. (1990). Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine, 28(5), 5–14.

    Article  MathSciNet  Google Scholar 

  3. Falconer, D. D., & Magee, F. R. (1973). Adaptive channel memory truncation for maximum likelihood sequence estimation. Bell System Technical Journal, 52(7), 1541–1563.

    MATH  Google Scholar 

  4. Martin, R. K., Vanbleu, K., Ding, M., Ysebaert, G., Milosevic, M., Evans, B.L., et al. (2005). Unification and evaluation of equalization structures and design algorithms for discrete multitone modulation systems. IEEE Transactions on Signal Processing, 53(10), 3880–3894.

    Article  MathSciNet  Google Scholar 

  5. Daly, D., Heneghan, C., & Fagan, A. D. (2004). Minimum mean-squared error impulse response shortening for discrete multitone transceivers. IEEE Transactions on Signal Processing, 52(1), 301–306.

    Article  MathSciNet  Google Scholar 

  6. Martin, R. K., Vanbleu, K., Ding, M., Ysebaert, G., Milosevic, M., Evans, B. L., et al. (2006). Implementation complexity and communication performance tradeoffs in discrete multitone modulation equalizers. IEEE Transactions on Signal Processing, 54(8), 3216–3230.

    Article  Google Scholar 

  7. Kilfoyle, D., & Baggeroer, A. (2000). The state of the art in underwater acoustic telemetry. IEEE Journal of Oceanic Engineering, 25(1), 4–27.

    Article  Google Scholar 

  8. Nieman, K. F., Perrine, K. A., Lent, K. H., Henderson, T. L., Brudner, T. J., & Evans, B. L. (2010). Multi-stage and sparse equalizer design for communication systems in reverberant underwater channels. In Proc. IEEE international workshop on signal processing systems. Cupertino, CA.

  9. Milosevic, M., Pessoa, L. F. C., Evans, B. L., & Baldick, R. (2002). DMT bit rate maximization with optimal time domain equalizer filter bank architecture. In Proc. Asilomar conference on signals, systems and computers (Vol. 1, pp. 377–382).

  10. Raghavan, S. A., Wolf, J. K., Milstein, L. B., & Barbosa, L. C. (1993). Non-uniformly spaced tapped-delay-line equalizers. IEEE Transactions on Communications, 41(9), 1290–1295.

    Article  MATH  Google Scholar 

  11. Baran, T., Wei, D., & Oppenheim, A. V. (2010). Linear programming algorithms for sparse filter design. IEEE Transactions on Signal Processing, 58(3), 1605–1617.

    Article  MathSciNet  Google Scholar 

  12. Kocic, M., Brady, D., & Stojanovic, M. (1995). Sparse equalization for real-time digital underwater acoustic communications. In Proc. IEEE OCEANS (Vol. 3, pp. 1417–1422).

  13. Lee, I. (1998). Optimization of tap spacings for the tapped delay line decision feedback equaliser. In Proc. IEEE International Conference on Communications (Vol. 1, pp. 11–15).

  14. Chopra, A., & Evans, B. L. (2010). Design of sparse filters for channel shortening. In Proc. IEEE international conference on acoustics, speech, and signal proccessing.

  15. Wu, J., Arslan, G., & Evans, B. L. (2000). Efficient matrix multiplication methods to implement a near-optimum channel shortening method for discrete multitone transceivers. In Proc. asilomar conference on signals, systems and computers (Vol. 1, pp. 152–157).

  16. Melsa, P. J. W., Younce, C. W., & Rohrs, C. E. (1996). Impulse response shortening for discrete multitone transceivers. IEEE Transactions on Communications, 44(12), 1662–1672.

    Article  Google Scholar 

  17. Martin, R., Ysebaert, G., & Vanbleu, K. (2007). Bit error rate minimizing channel shortening equalizers for cyclic prefixed systems. IEEE Transactions on Signal Processing, 55(6), 2605–2616.

    Article  MathSciNet  Google Scholar 

  18. Lopez-Valcarce, R. (2004). Minimum delay spread TEQ design in multicarrier systems. IEEE Signal Processing Letters, 11(8), 682–685.

    Article  Google Scholar 

  19. Arslan, G., Ding, M., Lu, B., Milosevic, M., Shen, Z., & Evans, B. L., Matlab multicarrier equalizer design toolbox, version 3.1. http://users.ece.utexas.edu/bevans/projects/adsl/dmtteq/.

  20. Golub, G. H., & Loan, C. F. V. (1996). Matrix computation (3rd ed.). Baltimore: John Hopkins University Press.

    Google Scholar 

  21. Arslan, G., Lu, B., Clark, L., & Evans, B. L. (2006). Iterative refinement methods for time-domain equalizer design. EURASIP Journal on Applied Signal Processing, 2006(7), 48–59.

    Google Scholar 

  22. Yin, C., & Yue, G. (1998). Optimal impulse response shortening for discrete multitone transceivers. Electronics Letters, 34(1), 35–36.

    Article  Google Scholar 

  23. Fulghum, T., Cairns, D., Cozzo, C., Wang, Y.-P., & Bottomley, G. (2009). Adaptive generalized rake reception in DS-CDMA systems—(transactions papers). IEEE Transactions on Wireless Communications, 8(7), 3464–3474.

    Article  Google Scholar 

  24. Lu, B., Clark, L. D., Arslan, G., & Evans, B. L. (2000). Fast time-domain equalization for discrete multitone modulation systems. In Proc. IEEE Digital Signal Processing Workshop.

  25. Lu, B. (2000). Wireline channel estimation and equalization. Ph.D. dissertation, The University of Texas at Austin.

  26. Perrine, K., Nieman, K., Lent, K., Henderson, T., Brudner, T., & Evans, B. (2009). The University of Texas at Austin Applied Research Laboratories Nov. 2009 five-element acoustic underwater dataset. http://users.ece.utexas.edu/~bevans/projects/underwater/.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Chopra.

Additional information

This research was supported by an equipment donation from Intel Corporation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chopra, A., Evans, B.L. Design of Sparse Filters for Channel Shortening. J Sign Process Syst 66, 259–272 (2012). https://doi.org/10.1007/s11265-011-0591-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-011-0591-0

Keywords

Navigation