Skip to main content
Log in

A Novel R-D Optimized MB-level Rate Control Scheme for Real-Time Video Coding

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Rate control has a critical influence on the video encoder design, and MB-level rate control is more flexible to control the spatial coding performance. However, most existing MB-level rate control methods are not designed for hardware implementation, and are too complex for practical use in real-time video coding. In this paper, a simple and effective MB-level rate control scheme is proposed that uses historical rate information to directly assign a QP value to a class of MBs. This paper will also introduce a method to realize the idea and make the pipeline data dependency applicable in circuit design. Experiments show that the proposed classification-based MB-level rate control algorithm can achieve a coding gain up to 0.6 dB and an averaging gain of 0.18 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Committee, T. M. E. (1993). MPEG-2 Video Test Model 5. ISO/IEC JTC1/SC29/WG11 Doc N, 400.

  2. Ribas-Corbera, J., & Lei, S. M. (1999). Rate control in DCT video coding for low-delay communications. [Article]. IEEE Transactions on Circuits and Systems for Video Technology, 9(1), 172–185. doi:10.1109/76.744284.

    Article  Google Scholar 

  3. Hung-Ju, L., Tihao, C., & Ya-Qin, Z. (2000). Scalable rate control for MPEG-4 video. IEEE Transactions on Circuits and Systems for Video Technology, 10(6), 878–894.

    Article  Google Scholar 

  4. Group, V. (1997). Text of ISO/IEC 14496–2 MPEG4 video VM—Version 8.0. ISO/IEC JTC1/SC29/WG11 Coding of Moving Pictures and Associated Audio MPEG 97/W1796.

  5. Ma, S., & Gao, W. (2002). Proposed draft description of rate control on JVT standard. JVT-F086, 6th meeting, Await, Japan. 5–13, December, 2002.

  6. Li, Z.-G., Pan, F., Lim, K. P., Feng, G., Lin, X., & Rahardja, S. Adaptive basic unit layer rate control for JVT. JVT-G012-r1, 7th Meeting, Pattaya II, Thailand. In JVT-G012-r1, 7th Meeting, Pattaya II, Thailand, 2003

  7. Cheng, S.-C., & Hang, H.-M. The impact of rate control algorithms on video codec hardware design. In Image Processing, 1997. Proceedings., International Conference on, 1997 (Vol. 2, pp. 807–810): IEEE

  8. Takamura, S., & Kobayashi, N. MPEG-2 one-pass variable bit rate control algorithm and its LSI implementation. In Image Processing, 2001. Proceedings. 2001 International Conference on, 2001 (Vol. 1, pp. 942–945): IEEE

  9. Fang, H.-C., Wang, T.-C., Chang, Y.-W., & Chen, L.-G. Hardware oriented rate control algorithm and implementation for realtime video coding. In Multimedia and Expo, 2003. ICME'03. Proceedings. 2003 International Conference on, 2003 (Vol. 3, pp. III-421-424 vol. 423): IEEE

  10. Tsai, J.-C. (2005). Rate control for low-delay video using a dynamic rate table. IEEE Transactions on Circuits and Systems for Video Technology, 15(1), 133–137.

    Article  Google Scholar 

  11. Ping-Tsung, W., Tzu-Chun, C., Ching-Lung, S., & Jiun-In, G. A H.264 basic-unit level rate control algorithm facilitating hardware realization. In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on, March 31 2008-April 4 2008 2008 (pp. 2185–2188)

  12. Jia, W., HaiBing, Y., BingQian, Z., & Ning, X. A low-cost MAD prediction algorithm for H.264 rate control facilitating hardware implementation. In Image and Signal Processing (CISP), 2011 4th International Congress on, 15–17 Oct. 2011 2011 (Vol. 1, pp. 18–21). doi:10.1109/cisp.2011.6099962.

  13. Chih-Hung, K., Li-Chuan, C., Kuan-Wei, F., & Bin-Da, L. (2010). Hardware/Software codesign of a low-cost rate control scheme for H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, 20(2), 250–261.

    Article  Google Scholar 

  14. Yuan, W., Lin, S. X., Zhang, Y. D., Yuan, W., & Luo, H. Y. (2006). Optimum bit allocation and rate control for H.264/AVC. IEEE Transactions on Circuits and Systems for Video Technology, 16(6), 705–715. doi:10.1109/Tcsvt.2006.875215.

    Article  Google Scholar 

  15. Wang, H. L., & Kwong, S. (2008). Rate-distortion optimization of rate control for H.264 with adaptive initial quantization parameter determination. IEEE Transactions on Circuits and Systems for Video Technology, 18(1), 140–144. doi:10.1109/Tcsvt.2007.913757.

    Article  Google Scholar 

  16. Dong, J. P., & Ling, N. (2009). A context-adaptive prediction scheme for parameter estimation in H.264/AVC macroblock layer rate control. IEEE Transactions on Circuits and Systems for Video Technology, 19(8), 1108–1117. doi:10.1109/Tcsvt.2009.2020338.

    Article  Google Scholar 

  17. Do-Kyoung, K., Mei-Yin, S., & Kuo, C. C. J. (2007). Rate control for H.264 video with enhanced rate and distortion models. IEEE Transactions on Circuits and Systems for Video Technology, 17(5), 517–529.

    Article  Google Scholar 

  18. Shuijiong, W., Yiqing, H., & Ikenaga, T. A macroblock-level rate control algorithm for H.264/AVC video coding with context-adaptive MAD prediction model. In Computer Modeling and Simulation, 2009. ICCMS '09. International Conference on, 20–22 Feb. 2009 2009 (pp. 124–128)

  19. Sullivan, G. J., & Wiegand, T. (1998). Rate-distortion optimization for video compression. Signal Processing Magazine, IEEE, 15(6), 74–90.

    Article  Google Scholar 

  20. Bjontegaard, G. (2001). (VCEG-M33) Calculation of average PSNR differences between RD-curves. VCEG.

  21. Tzu-Der Chuang, C.-Y. C., Yu-Lin Chang, Yu-Wen Huang, Shawmin Lei. AhG Quantization: Sub-LCU Delta QP (JCTVC-E051). In Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 5th JCT-VC Meeting in Geneva, 16–23 March, 2011, 2011

  22. Zhang, J., Yi, X. Q., Ling, N., & Shang, W. J. (2010). Context Adaptive Lagrange Multiplier (CALM) for rate-distortion optimal motion estimation in video coding. IEEE Transactions on Circuits and Systems for Video Technology, 20(6), 820–828. doi:10.1109/Tcsvt.2010.2045915.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da An.

Additional information

This work was partially supported by 973-2009CB320903 and 2010ZX03004-003.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, D., Tong, X. & He, Y. A Novel R-D Optimized MB-level Rate Control Scheme for Real-Time Video Coding. J Sign Process Syst 74, 175–187 (2014). https://doi.org/10.1007/s11265-013-0757-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-013-0757-z

Keywords

Navigation