Skip to main content
Log in

A Finite Volume Framework for Geometric Surface Processing

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

We present a surface denoising method using the vertex-centered finite volume method coupled with the mesh covariance fractional anisotropy. The approach is computationally fast and able to effectively remove undesirable noise while preserving prominent geometric features of a 3D mesh surface such as curved surface regions, sharp edges, and fine details. Extensive experimental results on various 3D models demonstrate the effectiveness of the proposed iterative algorithm, which yields satisfactory output results in just one single iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Taubin, G. (1995). A signal processing approach to fair surface design. Proc. ACM SIGGRAPH, pp. 351–358.

  2. Ohtake, Y., Belyaev, A.G., Bogaevski, I.A. (2000). Polyhedral surface smoothing with simultaneous mesh regularization. Proc. Geom. Modeling and Processing, pp. 229–237.

  3. Taubin, G. (2001). Linear anisotropic mesh filtering. IBM Research Report, RC2213.

  4. Petitjean, S. (2002). A survey of methods for recovering quadrics in triangle meshes. ACM Computing Surveys, 34(2), 211–262.

    Article  Google Scholar 

  5. Shen, Y., & Barner, K.E. (2004). Fuzzy vector median-based surface smoothing. IEEE Transactions on Visualization and Computer Graphics, 10(3), 252–265.

    Article  Google Scholar 

  6. Yagou, H., Ohtake, Y., Belyaev, A. (2002). Mesh smoothing via mean and median filtering applied to face normals. Proc. Geometric Modeling and Processing Theory and Applications, pp. 124–131.

  7. Fleishman, S., Drori, I., Cohen-Or, D. (2003). Bilateral mesh denoising. Proc. ACM SIGGRAPH, pp. 950–953.

  8. Jones, T., Durand, F., Desbrun, M. (2003). Non-iterative, feature preserving mesh smoothing. Proc. ACM SIGGRAPH, pp. 943–949.

  9. Desbrun, M., Meyer, M., Schröder, P., Barr, A. (1999). Implicit fairing of irregular meshes using diffusion and curvature flow. Proc. ACM SIGGRAPH, pp. 317–324.

  10. Desbrun, M., Meyer, M., Schröder, P., Barr, A. (2000). Anisotropic feature-preserving denoising of height fields and bivariate data. Proc. Graphics Interface, pp. 145–152.

  11. Clarenz, U., Diewald, U., Rumpf, M. (2000). Anisotropic geometric diffusion in surface processing. Proc. IEEE Visualization, pp. 397–405.

  12. Clarenz, U., Diewald, U., Rumpf, M. (2004). Processing textured surfaces via anisotropic geometric diffusion. IEEE Transactions on Image Processing, 13(2), 248–261.

    Article  Google Scholar 

  13. Bajaj, C.L., & Xu, G. (2003). Anisotropic diffusion of subdivision surfaces and functions on surfaces. ACM Transactions on Graphics, 22(1), 4–32.

    Article  Google Scholar 

  14. Tasdizen, T., Whitaker, R., Burchard, P., Osher, S. (2002). Geometric surface smoothing via anisotropic diffusion of normals. Proc. IEEE Visualization, pp. 125–132.

  15. Tasdizen, T., Whitaker, R., Burchard, P., Osher, S. (2003). Geometric surface processing via normal maps. ACM Transactions on Graphics, 22(4), 1012–1033.

    Article  Google Scholar 

  16. Hildebrandt, K., & Polthier, K. (2004). Anisotropic filtering of non-linear surface features. Computer Graphics Forum, 23(3), 391–400.

    Article  Google Scholar 

  17. LeVeque, R. (2002). Finite volume methods for hyperbolic problems. England: Cambridge University Press.

    Book  MATH  Google Scholar 

  18. Hirsch, C. (2007). Numerical computation of internal and external flows, 2nd edn. United Kingdom: Butterworth-Heinemann.

    Google Scholar 

  19. Basser, P.J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of magnetic resonance Series B, 111(3), 209–219.

    Article  Google Scholar 

  20. Rousseeuw, P.J., & Leroy, A.M. (1987). Robust regression and outlier detection. New York: Wiley.

    Book  MATH  Google Scholar 

  21. Huang, H., & Ascher, U. (2008). Fast denoising of surface meshes with intrinsic texture. Inverse Problems, 24(3), 034003.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was supported in part by NSERC Discovery Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben Hamza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kacem, A., Hamza, A.B. A Finite Volume Framework for Geometric Surface Processing. J Sign Process Syst 76, 63–75 (2014). https://doi.org/10.1007/s11265-013-0807-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-013-0807-6

Keywords

Navigation