Skip to main content
Log in

Multimedia Communications Using a Fast and Flexible DVC to H.264/AVC/SVC Transcoder

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The evolution of network technologies and mobile devices (equipped with low-cost video cameras) offer new multimedia services for mobile telephony, such as video communications. However, this kind of multimedia services needs to meet special requirements in terms of low complexity on both sides of the communication. Currently, most of mobile video communications are based on traditional codecs, which concentrates high complexity on the encoder side. Then, Distributed Video Coding tackles the problem of tougher complexity constraints for encoding algorithms at the expense of increasing decoder complexity. Taking into account the benefits of both paradigms, Distributed Video Coding to H.264 transcoding provides such multimedia systems with low complexity on both sides. Moreover, there is a H.264 extension called Scalable Video Coding which supports a variety of networks and devices. This proposed scheme moves the highly-complex processes to the transcoder, which has more resources. However, to achieve a low-delay transmission between mobile devices, transcoder time must be reduced. For this purpose, this paper focuses on reducing the complexity of the transcoder. To start with, the first transcoding stage is improved by means of a multicore processor, which executes the decoding algorithm in parallel. Then, the second stage uses the motion vectors generated during the first decoding stage to reduce the motion estimation complexity of the H.264 encoder and of its scalable extension as well. To support different Distributed Video Coding/H.264 patterns and profiles, the proposed transcoder includes a mapping between different kinds of frames and GOP lengths from both paradigms. As a result, this paper proposes an efficient algorithm to support mobile-to-mobile video communications which reduces the transcoding time about 70 % without significant rate-distortion penalty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. ISO/IEC International Standard 14496–10. (2003). Information Technology—Coding of Audio—Visual Objects—Part 10: Advanced Video Coding.

  2. ITU-T and ISO/IEC JTC 1. (2009 March). Advanced Video Coding for Generic Audiovisual Services. ITU-T Rec. H.264/AVC and ISO/IEC 14496–10 (including SVC extension).

  3. Schwarz, H., Marpe, D., & Wiegand, T. (2007). Overview of the scalable video coding extension of the H.264/AVC standard. IEEE Transactions on Circuits and Systems for Video Technology, 17(9), 1103–1120.

    Article  Google Scholar 

  4. Aaron, A., Rui, Z., & Girod, B. (2002 Nov). Wyner-Ziv coding of motion video. In Asilomar Conference on Signals, Systems and Computers (pp. 240–244). Pacific Grove, USA. doi:10.1109/ACSSC.2002.1197184.

  5. Brites, C., Ascenso, J., Quintas Pedro, J., & Pereira, F. (2008). Evaluating a feedback channel based transform domain Wyner-Ziv video codec. Signal Processing: Image Communication, 23(4), 269–297. doi:10.1016/j.image.2008.03.002.

    Google Scholar 

  6. DVEO Professional Broadcast Quality Subsystems. http://www.dveo.com/. Accessed 7 Aug 2013.

  7. Girod, B., Aaron, A. M., Rane, S., & Rebollo-Monedero, D. (2005). Distributed video coding. Proceedings of the IEEE, 93(1), 71–83.

    Article  Google Scholar 

  8. Badem, M., Fernando, W. A. C., & Kondoz, A. (2010). Transform domain distributed video coding with spatial correlations. Multimedia Tools and Applications, 48(3), 369–379.

    Article  Google Scholar 

  9. Ascenso, J., Brites, C., & Pereira, F. (2010). A flexible side information generation framework for distributed video coding. Multimedia Tools and Applications, 48(3), 381–409.

    Article  Google Scholar 

  10. Artigas, X., Ascenso, J., Dalai, M., Klomp, S., Kubasov, D., & Ouaret, M. (2007). The DISCOVER codec: Architecture, techniques and evaluation. In Picture Coding Symposium (PCS) (pp. 1–4). Lisbon, Portugal: Citeseer.

    Google Scholar 

  11. Ascenso, J., Brites, C., Dufaux, F., Fernando, A., Ebrahimi, T., Pereira, F., et al. (2010 August). The VISNET II DVC Codec: Architecture, Tools and Performance. In European Signal Processing Conference (EUSIPCO), Aalborg, Denmark.

  12. ISO/IEC 14486–2 PDAM1. (1999). Infomation Technology- Generic Coding of Audio-Visual Objects- Part 2: Visual.

  13. Ryanggeun, O., Jongbin, P., & Byeungwoo, J. (2010 March). Fast implementation of Wyner-Ziv Video codec using GPGPU. In IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB) (pp. 1–5). Shanghai, China. doi:10.1109/ISBMSB.2010.5463150.

  14. Momcilovic, S., Yige, W., Rane, S., & Vetro, A. (2010 October). Toward realtime side information decoding on multi-core processors. In IEEE International Workshop on Multimedia Signal Processing (MMSP) (pp. 321–326). Saint-Malo, France. doi:10.1109/MMSP.2010.5662040.

  15. Kubasov, D., Lajnef, K., & Guillemot, C. A. (2007 October). Hybrid Encoder/Decoder Rate Control for Wyner-Ziv Video Coding with a Feedback Channel, In IEEE 9th Workshop on Multimedia Signal Processing, (MMSP) (pp 251–254). Chaina, Crete, Greece. doi:10.1109/MMSP.2007.4412865.

  16. Morbee, M., Roca, A., Prades-Nebot, J., Pižurica, A., & Philips, W. (2008). Reduced decoder complexity and latency in pixel-domain Wyner–Ziv video coders. Signal, Image and Video Processing, 2(2), 129–140.

    Article  Google Scholar 

  17. Areia, J., Ascenso, J., Brites, C., & Pereira, F. (2008 August). Low complexity hybrid rate control for lower complexity Wyner-Ziv video decoding. In 16th European Signal Processing Conference (EUSIPCO), Lausanne, Switzerland.

  18. Fernández-Escribano, G., Cuenca, P., Orozco-Barbosa, L., Garrido, A., & Kalva, H. (2008). Simple intra prediction algorithms for heterogeneous MPEG-2/H. 264 video transcoders. Multimedia Tools and Applications, 38(1), 1–25.

    Article  Google Scholar 

  19. Fernández, K., & Cuenca, O. (2007). A first approach to speeding-up the inter mode selection in MPEG-2/H. 264 transcoders using machine learning. Multimedia Tools and Applications, 35, 225–240.

    Article  Google Scholar 

  20. De Cock, J., Notebaert, S., Vermeirsch, K., Lambert, P., & Van de Walle, R. (2010). Dyadic spatial resolution reduction transcoding for H. 264/AVC. Multimedia Systems, 16(2), 139–149.

    Article  Google Scholar 

  21. Peixoto, E., Queiroz, R. L., & Mukherjee, D. (2010). A Wyner-Ziv video transcoder. IEEE Transactions on Circuits and Systems for Video Technology, 20(2), 189–200.

    Article  Google Scholar 

  22. Martínez, J. L., Fernández-Escribano, G., Kalva, H., Fernando, W. A. C., & Cuenca, P. (2009). Wyner-Ziv to H.264 video transcoder for low cost video encoding. IEEE Transactions on Consumer Electronics, 55(3), 1453–1461.

    Article  Google Scholar 

  23. Corrales-García, A., Martínez, J. L., & Fernandez-Escribano, G. (2010 October). Reducing DVC Decoder Complexity in a Multicore System, In IEEE International Workshop on Multimedia Signal Processing (MMSP) (pp. 315–320). Saint-Malo, France. doi:10.1109/MMSP.2010.5662039.

  24. Corrales-García, A., Martínez, J. L., Fernandez-Escribano, G., Quiles, F. J., & Fernando, W. A. C. (2011 October). Wyner-Ziv Frame Parallel Decoding Based on Multicore Processors. In IEEE International Workshop on Multimedia Signal Processing (MMSP) (pp. 1–6). Hangzhou, China. doi:10.1109/MMSP.2011.6093835.

  25. Corrales-García, A., Martínez, J. L., Fernandez-Escribano, G., & Quiles, F. J. (2012 January). Forward Wyner-Ziv Fast Video Decoding Using Multicore Processors, In International Conference on MultiMedia Modeling (MMM), vol. 7131 (pp. 574–584). Klagenfurt, Austria. doi:10.1007/978-3-642-27355-1_53.

  26. Sheng, T., Zhu, X., Hua, G., Guo, H., Zhou, J., & Chen, C. (2010). Feedback-free rate-allocation scheme for transform domain Wyner–Ziv video coding. Multimedia Systems, 16(2), 127–137. doi:10.1007/s00530-009-0179-8.

    Article  Google Scholar 

  27. Dziri, A., Diallo, A., Kieffer, M., & Duhamel, P. (2008 August). P-Picture Based H.264/AVC to H.264/SVC Temporal Transcoding, In International Wireless Communications and Mobile Computing Conference (IWCMC), (pp. 425–430). Crete Island, Greece.

  28. Al-muscati, H., & Labeau, F. (2010 July). Temporal Transcoding of H.264/AVC Video to the Scalable Format. In 2nd International Conference on Image Processing, Theory Tools and Applications (IPTA), (pp. 138–143). Paris, France. doi:10.1109/IPTA.2010.5586733.

  29. Garrido-Cantos, R., de Cock, J., Martínez, J. L., Van Leuven, S., Cuenca, P., Garrido, A., & Van de Walle, R. (2010 October). Video Adaptation for Mobile Digital Television. In 4th IFIP Wireless and Mobile Networking Conference (WMNC), (pp. 1–6). Budapest, Hungary. doi:10.1109/WMNC.2010.5678746.

  30. Ascenso, J., Brites, C., & Pereira, F. (2005 June). Improving frame interpolation with spatial motion smoothing for pixel domain distributed video coding. In Speech and Image Processing, Multimedia Communications and Services (EURASIP). Smolenice, Slovak Republic.

  31. The OpenMP API specification for parallel programming. http://openmp.org. Accessed 7 Aug 2013.

  32. Intel Processor Core family. http://www.intel.com/. Accessed 7 Aug 2013.

  33. JM H.264/AVC Reference Software, Version 17.2, http://iphome.hhi.de. Accessed 07 Aug 2013.

  34. Joint Video Team JSVM reference software, Version 9.19.3. http://www.hhi.fraunhofer.de/de/kompetenzfelder/image-processing/research-groups/image-video-coding/svc-extension-of-h264avc/jsvm-reference-software.html. Accessed 7 Aug 2013.

  35. Sullivan, G., & Bjøntegaard, G. (2001). Recommended Simulation Common Conditions for H.26L Coding Efficiency Experiments on Low-Resolution Progressive-Scan Source Material. In ITU-T VCEG, Doc. VCEG-N81.

Download references

Acknowledgments

This work has been jointly supported by the MINECO and European Commission (FEDER funds) under the project TIN2012-38341-C04-04 The work presented was carried out by using the VISNET2-WZ-IST software developed in the framework of the VISNET II project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Corrales-García.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrales-García, A., Rodríguez-Sánchez, R., Martínez, J.L. et al. Multimedia Communications Using a Fast and Flexible DVC to H.264/AVC/SVC Transcoder. J Sign Process Syst 79, 211–232 (2015). https://doi.org/10.1007/s11265-013-0831-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-013-0831-6

Keywords

Navigation