Skip to main content

Advertisement

Log in

Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Proximal dental caries are diagnosed using dental X-ray images. Unfortunately, the diagnosis of proximal dental caries is often stifled due to the poor quality of dental X-ray images. Therefore, we propose an automatic detection system to detect proximal dental caries in periapical images for the first time. The system comprises four modules: horizontal alignment of pictured teeth, probability map generation, crown extraction, and refinement. We first align the pictured teeth horizontally as a pre-process to minimize performance degradation due to rotation. Next, a fully convolutional network are used to produce a caries probability map while crown regions are extracted based on optimization schemes and an edge-based level set method. In the refinement module, the caries probability map is refined by the distance probability modeled by crown regions since caries are located near tooth surfaces. Also we adopt non-maximum suppression to improve the detection performance. Experiments on various periapical images reveal that the proposed system using a convolutional neural network (CNN) and crown extraction is superior to the system using a naïve CNN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 3431–3440).

  2. Li, C., Xu, C., Gui, C., & Fox, M.D. (2010). Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing, 19(12), 3243–3254.

    Article  MathSciNet  MATH  Google Scholar 

  3. Lowe, D.G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  4. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 886–893).

  5. Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 511–518).

  6. Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: application to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041.

    Article  MATH  Google Scholar 

  7. Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

    Article  Google Scholar 

  8. Lecun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Habbard, W., & Jackel, L.D. (1990). Handwritten digit recognition with a back-propagation network. In Proceedings of Conference on Neural Information Processing Systems (pp. 396–404).

  9. Boureau, Y.L., Ponce, J., & Lecun, Y. (2010). A theoretical analysis of feature pooling in visual recognition. In Proceedings of International Conference on Machine Learning (pp. 111–118).

  10. Krizhevsky, A., Sutskever, I., & Hinton, G.E. (2012). Imagenet classification with deep convolutional neural networks. In Proceedings of Conference on Neural Information Processing Systems (pp. 1097–1105).

  11. Lawrence, S., Giles, C.L., Tsoi, A.C., & Back, A.D. (1997). Face recognition: a convolutional neural-network approach. Proceedings of Conference on Neural Information Processing Systems, 8(1), 98–113.

    Google Scholar 

  12. Cireşan, D.C., Giusti, A., Gambardella, L.M., & Schmidhuber, J. (2013). Mitosis detection in breast cancer histology images with deep neural networks. In Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention (pp. 411–418).

  13. Zhang, W., Li, R., Deng, H., Wang, L., Lin, W., Ji, S., & Shen, D. (2015). Deep convolutional neural networks for multi-modality isointense infant brain image segmentation. NeuroImage, 214–224.

  14. Cireşan, D.C., Giusti, A., Gambardella, L.M., & Schmidhuber, J. (2012). Deep neural networks segment neuronal membranes in electron microscopy images. In Proceedings of Conference on Neural Information Processing Systems (pp. 2843–2851).

  15. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 248–255).

  16. Taigman, Y., Yang, M., Ranzato, M.A., & Wolf, L. (2014). Deepface: Closing the gap to human-level performance in face verification. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (pp. 1701–1708).

  17. Jain, A.K., & Chen, H. (2004). Matching of dental X-ray images for human identification. Pattern Recognition, 37(7), 1519– 1532.

    Article  Google Scholar 

  18. Fahmy, G., Nassar, D., Haj-Said, E., Chen, H., Nomir, O., Zhou, J., Howell, R., Ammar, H.H., Abdel-Mottaleb, M., & Jain, A.K. (2005). Toward an automated dental identification system. Journal of Electronic Imaging, 14(4), 043018.

    Article  Google Scholar 

  19. Zhou, J., & Abdel-Mottaleb, M. (2005). A content-based system for human identification based on bitewing dental X-ray images. Pattern Recognition, 38(11), 2132–2142.

    Article  Google Scholar 

  20. Nomir, O., & Abdel-Mottaleb, M. (2004). A system for human identification from X-ray dental radiographs. Pattern Recognition, 38(8), 1295–1305.

    Article  MATH  Google Scholar 

  21. Mahoor, M.H., & Abdel-Mottaleb, M. (2005). Classification and numbering of teeth in dental bitewing images. Pattern Recognition, 38(4), 577–586.

    Article  Google Scholar 

  22. Lin, P.L., Lai, Y.H., & Huang, P.W. (2010). An effective classification and numbering system for dental bitewing radiographs using teeth region and contour information. Pattern Recognition, 43(4), 1380–1392.

    Article  Google Scholar 

  23. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  MATH  Google Scholar 

  24. Al-sherif, N., Guo, G., & Ammar, H.H. (2012). A new approach to teeth segmentation. In Proceedings of IEEE International Symposium on Multimedia (pp. 1295–1305).

  25. Avidan, S., & Shamir, A. (2007). Seam carving for content-aware image resizing. ACM Transactions on Graphics, 26(3), 10.

    Article  Google Scholar 

  26. Shah, S., Abaza, A., Ross, A., & Ammar, H. (2006). Automatic tooth segmentation using active contour without edges. In Proceedings of Biometrics Symposium: Special Session on Research (pp. 1–6).

  27. Chan, T.F., & Vese, L. (2001). Active contours without edges. IEEE Transactions on Image Processing, 10(2), 266–277.

    Article  MATH  Google Scholar 

  28. Osher, S., & Sethian, J.A. (1988). Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton- Jacobi formulations. Journal of Computational Physics, 79(1), 12–49.

    Article  MathSciNet  MATH  Google Scholar 

  29. Caselles, V., Catte, F., Coll, T., & Dibos, F. (1993). A geometric model for active contours in image processing. Numerische Mathematik, 66(1), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  30. Oliveira, J.P.R. (2009). Caries detection in panoramic dental X-ray images: Master Thesis, Universidade da Beira Interior Departamento de Informatica.

  31. Rad, A.E., Amin, I.B.M., Rahim, M.S.M., & Kolivand, H. (2015). Computer-aided dental caries detection system from X-ray images. Computational Intelligence in Information Systems, 331, 233–243.

    Google Scholar 

  32. Otsu, N. (1979). A threshold selection method from gray-level histogram. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66.

    Article  MathSciNet  Google Scholar 

  33. Fischler, M.A., & Bolles, R.C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  34. Nair, N., & Hinton, G.E. (2010). Rectified linear units improve restricted boltzmann machines. Inproceedings of International Conference on Machine Learning, 807–814.

Download references

Acknowledgments

This work is supported by Vatech Co., Ltd., Korea, for supporting the study and providing the dataset of dental X-ray images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changick Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J., Eun, H. & Kim, C. Boosting Proximal Dental Caries Detection via Combination of Variational Methods and Convolutional Neural Network. J Sign Process Syst 90, 87–97 (2018). https://doi.org/10.1007/s11265-016-1214-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-016-1214-6

Keywords

Navigation