Skip to main content

Advertisement

Log in

Throughput and Energy Efficiency of Wireless Powered Multi-tier MIMO HetNets

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

Wireless powered communications have been recently proposed as a variable power solution for the heterogeneous networks (HetNets) with small and flexible deployments of low-power base stations (BSs). In this paper, we consider the wireless powered multi-tier multi-input multi-output (MIMO) HetNets, where the multi-antenna BSs perform downlink transmission. In particular, we consider two cases of interests, i.e., 1) energy harvesting (EH) without energy beamforming (EB) tier and 2) EH with EB tier. Using tools of stochastic geometry, we perform analysis on the throughput and energy efficiency (EE) of the considered network. Closed-form and tractable results are obtained to reveal interesting insights that the proposed wireless-powered MIMO HetNets can achieve higher EE as compared to the conventional HetNets without EH, and the EE performance can be further improved by introducing well-designed EB across tiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Notes

  1. It is noted in order to obtain sufficient energy, a rectenna is equipped at each EH BS to harvest ambient RF energy [30].

References

  1. Buzzi, S., Chih-Lin, I., Klein, T.E., Poor, H.V., Yang, C., Zappone, A. (2016). A survey of energy-efficient techniques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 34, 697–709.

    Article  Google Scholar 

  2. Ghosh, A., Mangalvedhe, N., Ratasuk, R., Mondal, B., Cudak, M., Visotsky, E., Thomas, T., Andrews, J.G., Xia, P., Jo, H.S., et al. (2012). Heterogeneous cellular networks: from theory to practice. IEEE Communications Magazine, 50, 54–64.

    Article  Google Scholar 

  3. Qing, L., Zhu, Q., Wang, M. (2006). Design of a distributed energy-efficient clustering algorithm for heterogeneous wireless sensor networks. Computer Communications, 29, 2230–2237.

    Article  Google Scholar 

  4. Huang, Y., Zhang, X., Zhang, J., Tang, J., Su, Z., Wang, W. (2014). Energy-efficient design in heterogeneous cellular networks based on large-scale user behavior constraints. IEEE Transactions on Wireless Communications, 13, 4746–4757.

    Article  Google Scholar 

  5. Wang, W., & Shen, G. (2010). Energy efficiency of heterogeneous cellular network. In IEEE Vehicular technology conference fall (VTC 2010-Fall) (pp. 1–5). Ottawa.

  6. Arnold, O., Richter, F., Fettweis, G., Blume, O. (2010). Power consumption modeling of different base station types in heterogeneous cellular networks. In Future network and mobile summit (pp. 1–8). Florence.

  7. Xu, W., Zhou, X., Lee, C.H., Feng, Z., Lin, J. (2016). Energy-efficient joint sensing duration, detection threshold, and power allocation optimization in cognitive OFDM systems. IEEE Transactions on Wireless Communications, 15, 8339–8352.

    Article  Google Scholar 

  8. Soh, Y.S., Quek, T.Q., Kountouris, M., Shin, H. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 31, 840–850.

    Article  Google Scholar 

  9. Ngo, H.Q., Larsson, E.G., Marzetta, T.L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61, 1436–1449.

    Article  Google Scholar 

  10. Bi, S., Ho, C.K., Zhang, R. (2015). Wireless powered communication: opportunities and challenges. IEEE Communications Magazine, 53, 117–125.

    Article  Google Scholar 

  11. Buzzi, S., Chih-Lin, I., Klein, T.E., Poor, H.V. (2016). A survey of energy-efficient tech- niques for 5G networks and challenges ahead. IEEE Journal on Selected Areas in Communications, 34, 697–709.

    Article  Google Scholar 

  12. Bi, S., Ho, C.K., Zhang, R. (2016). Wireless powered communication networks: an overview. IEEE Wireless Communications, 23, 10–18.

    Article  Google Scholar 

  13. Xu, W., Liu, Z., Li, S., Lin, J. (2017). Two-plus-one cognitive cooperation based on energy harvesting and spatial multiplexing. IEEE Transactions on Vehicular Technology, 66, 7589–7593.

    Article  Google Scholar 

  14. Sun, Q., Zhu, G., Shen, C., Li, X. (2014). Joint beamforming design and time allocation for wireless powered communication networks. IEEE Communications Letters, 18, 1783–1786.

    Article  Google Scholar 

  15. Lindemark, B, & Oberg, G. (2001). Solar power for radio base station (rbs) sites applications including system dimensioning, cell planning and operation. In International telecommunications energy conference (pp. 587–590). Edinburgh.

  16. Piro, G., Miozzo, M., Forte, G., Baldo, N., Grieco, L.A., Boggia, G., Dini, P. (2013). Hetnets powered by renewable energy sources: sustainable next-generation cellular networks. IEEE Internet Computing, 17, 32–39.

    Article  Google Scholar 

  17. Ju, H., & Zhang, R. (2014). User cooperation in wireless powered communication networks. In IEEE Global communications conference (GLOBECOM) (pp. 1430–1435). Austin.

  18. Ng, D.W.K., Lo, E.S., Schober, R. (2013). Wireless information and power transfer: energy efficiency optimization in OFDMA systems. IEEE Transactions on Wireless Communications, 12, 6352–6370.

    Article  Google Scholar 

  19. Chen, X., Wang, X., Chen, X. (2013). Energy-efficient optimization for wireless information and power transfer in large-scale MIMO systems employing energy beamforming. IEEE Wireless Communications Letters, 2, 667–670.

    Article  Google Scholar 

  20. Haenggi, M., Andrews, J.G., Baccelli, F., Dousse, O. (2009). Stochastic geometry and random graphs for the analysis and design of wireless networks. IEEE Journal on Selected Areas in Communications, 27, 1029–1046.

    Article  Google Scholar 

  21. Haenggi, M., & Ganti, R.K. (2009). Interference in large wireless networks (pp. 127–248). Now Publishers Inc.

  22. Andrews, J.G., Gupta, A.K., Dhillon, H. (2016). A primer on cellular network analysis using stochastic geometry.

  23. Dhillon, H.S., Ganti, R.K., Baccelli, F., Andrews, J.G. (2012). Modeling and analysis of K-tier downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 30, 550–560.

    Article  Google Scholar 

  24. Dhillon, H.S., Kountouris, M., Andrews, J.G. (2013). Downlink MIMO hetnets: modeling, ordering results and performance analysis. IEEE Transactions on Wireless Communications, 12, 5208–5222.

    Article  Google Scholar 

  25. Deng, Y., Wang, L., Elkashlan, M., Renzo, M.D., Yuan, J. (2016). Modeling and analysis of wireless power transfer in heterogeneous cellular networks. IEEE Transactions on Communications, 64, 5290–5303.

    Article  Google Scholar 

  26. Zhang, T., Zhao, J., An, L., Liu, D. (2016). Energy efficiency of base station deployment in ultra dense hetNets: a stochastic geometry analysis. IEEE Wireless Communications Letters, 5, 184–187.

    Article  Google Scholar 

  27. Singh, S., Dhillon, H.S., Andrews, J.G. (2012). Offloading in heterogeneous networks: modeling, analysis, and design insights. IEEE Transactions on Wireless Communications, 12, 2484–2497.

    Article  Google Scholar 

  28. Gupta, A., Dhillon, H., Vishwanath, S., Andrews, J. (2014). Downlink multi-antenna heterogeneous cellular network with load balancing. IEEE Transactions on Communications, 62, 4052–4067.

    Article  Google Scholar 

  29. Li, C., Zhang, J., Letaief, K. (2014). Throughput and energy efficiency analysis of small cell networks with multi-antenna base stations. IEEE Transactions on Wireless Communications, 13, 2505–2517.

    Article  Google Scholar 

  30. Zhao, Y, Leung, V.C.M., Zhu, C, Gao, H, Chen, Z, Ji, H. (2017). Energy-efficient sub-carrier and power allocation in cloud-based cellular network with ambient RF energy harvesting. IEEE Access, 5, 1340–1352.

    Article  Google Scholar 

  31. Alzer, H. (1997). On some inequalities for the incomplete Gamma function. Mathematics of Computation of the American Mathematical Society, 66, 771–778.

    Article  MathSciNet  MATH  Google Scholar 

  32. Baccelli, F., & Blaszczyszyn, B. (2009). Stochastic geometry and wireless networks: theory. Now Publishers Inc.

  33. Yu, P.S., Lee, J., Quek, T., Hong, Y.W. (2015). Traffic offloading in heterogeneous networks with energy harvesting personal cells network throughput and energy efficiency. IEEE Transactions on Wireless Communications, 15, 1536–1276.

    Google Scholar 

  34. Yu, SM, & Kim, SL. (2013). Downlink capacity and base station density in cellular networks. In International symposium and workshops on modeling and optimization in mobile (pp. 119–124). Tsukuba Science City.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Gao.

Appendices

Appendix A

Recalling the definition in (4), the Laplace transformation of E can be derived as

$$\begin{array}{@{}rcl@{}} \mathcal{L}_{E{{\left( \mathrm{s}\right)}}} & = & {\mathbb{E}_{{E}}\left[{e}^{{-s\beta{\sum}_{j\in\mathcal{K}}{\sum}_{x\in{\Phi}_{j}}P_{j}g_{j}\left( x\right)||x||^{-\alpha_{j}}}}\right]} \end{array} $$
(47)
$$\begin{array}{@{}rcl@{}} & \underset{=}{(a)} & {{\underset{{j\in\mathcal{K}}}{\prod}\mathbb{E}\left[{\underset{x\in{\Phi}_{j}}{\prod}\mathbb{E}_{{g_{j}\left( x\right)}}}\left( e^{{-s\beta P_{j}tg_{j}\left( x\right)||x||^{-\alpha_{j}}}}\right)\right]}} \end{array} $$
(48)
$$\begin{array}{@{}rcl@{}} & \underset{=}{(b)} & {\underset{{j\in\mathcal{K}}}{\prod}e^{-\lambda_{j}{\int}_{\mathbb{R}^{2}}\left( 1-{E_{{g_{j}}}\left( x\right)}\left( e^{{-s\beta P_{j}tg_{j}\left( x\right)||x||^{-\alpha_{j}}}}\right)\right)dx}} \end{array} $$
(49)
$$\begin{array}{@{}rcl@{}} & \underset{=}{(c)} & \underset{{j\in\mathcal{K}}}{\prod}e^{-\lambda_{j}{\int}_{\mathbb{R}^{2}}\left( 1-\frac{1}{\left( 1+{s\beta P_{j}||x||^{-\alpha_{j}}}\right)^{U_{j}}}\right)dx} \end{array} $$
(50)
$$\begin{array}{@{}rcl@{}} & \underset{=}{(d)} & \underset{{j\in\mathcal{K}}}{\prod}\exp\left( -{\lambda_{j}{{\int}_{\mathbb{R}^{2}}}{\sum\limits_{{m=\text{1}}}^{{U_{j}}}}\left( {\begin{array}{c} U_{j}\\ m \end{array}}\right)}\frac{{\left( s\beta P_{j}||x||^{-\alpha_{j}}\right)}^{{m}}}{{\left( \text{1}+{s\beta P_{j}||x||^{-\alpha_{j}}}\right)^{U_{j}}}}dx\right) \end{array} $$
(51)
$$\begin{array}{@{}rcl@{}} & \underset{=}{(e)} & \underset{{j\in\mathcal{K}}}{\prod}\exp\left( -2\pi{\lambda_{j}{\sum\limits_{m=\text{1}}^{{U_{j}}}}\left( {\begin{array}{c} U_{j}\\ m \end{array}}\right)}{{{\int}_{\text{0}}^{{{\infty}}}}}\frac{{\left( s\beta P_{j}R^{-\alpha_{j}}\right)}^{{m}}}{{\left( \text{1}+{s\beta P_{j}R^{-\alpha_{j}}}\right)^{U_{j}}}}{RdR}\right) \end{array} $$
(52)
$$\begin{array}{@{}rcl@{}} & \underset{=}{(f)} & \underset{{j\in\mathcal{K}}}{\prod}\exp\left( -2\pi{\lambda_{j}}(s\beta P_{j})^{\frac{2}{\alpha_{j}}}{\sum\limits_{m=\text{1}}^{{U_{j}}}}\left( {\begin{array}{c} U_{j}\\ m \end{array}}\right){{{\int}_{\text{0}}^{{{\infty}}}}}\frac{{r}^{{-\alpha_{j}m}}}{{\left( \text{1}+r^{-\alpha_{j}}\right)^{U_{j}}}}{rdr}\right) \end{array} $$
(53)
$$\begin{array}{@{}rcl@{}} & \underset{=}{(g)} & \exp\left( -2\pi{\sum}_{j\in\mathcal{K}}\frac{\lambda_{j}}{\alpha_{j}}(s\beta P_{j})^{\frac{2}{\alpha_{j}}}{\sum}_{m = 1}^{U_{j}}\left( {\begin{array}{c} U_{j}\\ m \end{array}}\right){{\int}_{0}^{1}}(1-t)^{m-\frac{2}{\alpha_{j}}-1}t^{\frac{2}{\alpha_{j}}-m+U_{j}-1}dt\right) \end{array} $$
(54)
$$\begin{array}{@{}rcl@{}} & \underset{=}{(h)} & \exp\left( -2\pi{\sum}_{j\in\mathcal{K}}\frac{\lambda_{j}}{\alpha_{j}}(s\beta P_{j})^{\frac{2}{\alpha_{j}}}{\sum}_{m = 1}^{U_{j}}\left( {\begin{array}{c} U_{j}\\ m \end{array}}\right)B\left( U_{j}-m+\frac{2}{\alpha_{j}},m-\frac{2}{\alpha_{j}}\right)\right) \end{array} $$
(55)

where (a) follows from the independence of tiers, (b) uses the probability generating function (PGFL) of PPP [22], and \(\mathbb {R}^{2}\) is presented as a two-dimensional plane. (c) follows from the Laplace transform of g j (x) ∼Γ(U j ,1), (d) follows from Binomial theorem where \(\left ({\begin {array}{c} U_{j}\\ m \end {array}}\right )\) represents \({C_{U_{j}}^{m}}={\frac {U_{j}!}{m!(U_{j}-m)!}}\), (e) uses the transformation to the polar coordinates where x = (R,𝜃), (f) follows by \((s\beta P_{j})^{\alpha _{j}}R=r\), then \(R=r(s\beta P_{j})^{-\alpha _{j}},dR=(s\beta P_{j})^{-\alpha _{j}}dr\), (g) follows from \(\frac {1}{\text {1}+r^{-\alpha _{j}}}=t\) and then (h) employs the Beta function \(B(x,y)={{\int }_{0}^{1}}u^{x-1}(1-u)^{y-1}du\).

Appendix B

From the viewpoint of a typical EB BS, the PMF of the number of EH BSs \(N_{E}^{\prime }\) in tier K associated with one EB BS in tier i can refer to [34]

$$ P\left( N_{E}^{\prime}=n\right)=\frac{3.5^{3.5}{\Gamma}\left( n + 3.5\right)\left( \lambda_{K}/p\lambda_{i}\right)^{n}\ }{{\Gamma}\left( n + 3.5\right)n!\left( \lambda_{K}/p\lambda_{i}+ 3.5\right)^{n + 3.5}} $$
(56)

From the viewpoint of a typical EH BS, there is a tagged EB BS that the typical EH BS is associated with. Besides, there are other EH BSs associated with the tagged EB BS. With reference to [27], the PMF of the number of the other EH BSs (apart from the typical EH BS that are associated with the tagged EB BS) is the same with Eq. 56. Then, the PMF of the number of EH BSs N E including the typical EH BS that are associated with one tagged EB BS can be written as

$$ P\left( N_{E}=n\right)=P\left( N_{E}^{\prime}=n + 1\right) $$
(57)

Therefore, N E and \(N_{E}^{\prime }\) can be approximated by the mean value \(1 + 1.28\frac {\lambda _{K}}{p\lambda _{i}}\) and \(\frac {\lambda _{K}}{p\lambda _{i}}\) [33]. respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Gao, J., Shi, Z. et al. Throughput and Energy Efficiency of Wireless Powered Multi-tier MIMO HetNets. J Sign Process Syst 90, 857–871 (2018). https://doi.org/10.1007/s11265-018-1354-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-018-1354-y

Keywords

Navigation