Skip to main content

Advertisement

Log in

Transfer Learning of BCI Using CUR Algorithm

  • Published:
Journal of Signal Processing Systems Aims and scope Submit manuscript

Abstract

The brain computer interface (BCI) are used in many applications including medical, environment, education, economy, and social fields. In order to have a high performing BCI classification, the training set must contain variations of high quality subjects which are discriminative. Variations will also drive transferability of training data for generalization purposes. However, if the test subject is unique from the training set variations, BCI performance may suffer. Previously, this problem was solved by introducing transfer learning in the context of spatial filtering on small training set by creating high quality variations within training subjects. In this study however, it was discovered that transfer learning can also be used to compress the training data into an optimal compact size while improving training data performance. The transfer learning framework proposed was on motor imagery BCI-EEG using CUR matrix decomposition algorithm which decomposes data into two components; C and UR which is each subject’s EEG signal and common matrix derived from historical EEG data, respectively. The method is considered transfer learning process because it utilizes historical data as common matrix for the classification purposes. This framework is implemented in the BCI system along with Common Spatial Pattern (CSP) as features extractor and Extreme Learning Machine (ELM) as classifier and this combination exhibits an increase of accuracy to up to 26% with 83% training database compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. He, B., Gao, S., Yuan, H., & Wolpaw, J. R. (2013). Brain–Computer Interfaces. In Neural Engineering (pp. 87–151).

  2. George, L., & Lécuyer, A. (2010). An overview of research on ‘passive’ brain-computer interfaces for implicit human-computer interaction. International Conference on Applied Bionics and Biomechanics. ICABB, 2010.

  3. Liu, Y., et al. (2014). A tensor-based scheme for stroke patients’ motor imagery EEG analysis in BCI-FES rehabilitation training. Journal of Neuroscience Methods, 222, 238–249.

    Article  Google Scholar 

  4. Gürkök, H., Poel, M., & Zwiers, J. (2010). Classifying motor imagery in presence of speech. In Proceedings of the International Joint Conference on Neural Networks.

  5. Arns, M., Cerquera, A., Gutiérrez, R. M., Hasselman, F., & Freund, J. A. (2014). Non-linear EEG analyses predict non-response to rTMS treatment in major depressive disorder. Clinical Neurophysiology, 125(7), 1392–1399.

    Article  Google Scholar 

  6. Sosa, O. A. P., Quijano, Y., Doniz, M., & Chong-Quero J. E. (2011). BCI: A historical analysis and technology comparison. Pan American Health Care Exchanges, 205–209.

  7. Samek, W., Muller, K. R., Kawanabe, M., & Vidaurre, C. (2012). Brain-computer interfacing in discriminative and stationary subspaces. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (pp. 2873–2876).

  8. Li, K. G., Shapiai, M. I., Adam, A., & Ibrahim, Z. (2017). Feature scaling for EEG human concentration using particle swarm optimization. In Proceedings of 2016 8th International Conference on Information Technology and Electrical Engineering: Empowering Technology for Better Future, ICITEE 2016.

  9. Aghaei, A. S., Mahanta, M. S., & Plataniotis, K. N. (2016). Separable common spatio-spectral patterns for motor imagery BCI systems. IEEE Transactions on Biomedical Engineering, 63(1), 15–29.

    Article  Google Scholar 

  10. Il Suk, H., Fazli, S., Mehnert, J., Müller, K. R., & Lee, S. W. (2014). Predicting BCI subject performance using probabilistic spatio-temporal filters. PLoS One, 9(2).

  11. Samek, W., Kawanabe, M., & Muller, K. R. (2014). Divergence-based framework for common spatial patterns algorithms. IEEE Reviews in Biomedical Engineering, 7, 50–72.

    Article  Google Scholar 

  12. Zhang, H., Yang, H., & Guan, C. (2013). Bayesian Learning for Spatial Filtering in an EEG-Based Brain-Computer Interface. IEEE Transaction on Neural Networks Learning System, 24(7), 1049–1060.

    Article  Google Scholar 

  13. Krauledat, M., Tangermann, M., Blankertz, B., & Müller, K. R. (2008). Towards zero training for brain-computer interfacing. PLoS One, 3(8).

  14. Ang, K. K., Chin, Z. Y., Zhang, H., & Guan, C. (2012). Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs. Pattern Recognition, 45(6), 2137–2144.

    Article  Google Scholar 

  15. Jayaram, V., Alamgir, M., Altun, Y., Scholkopf, B., & Grosse-Wentrup, M. (2016). Transfer Learning in Brain-Computer Interfaces. IEEE Computational Intelligence Magazine, 11(1), 20–31.

    Article  Google Scholar 

  16. Von Bünau, P., Meinecke, F. C., Scholler, S., & Müller, K. R. (2010). Finding Stationary brain sources in EEG data. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10 (pp. 2810–2813).

  17. Jain, A., Kim, I., & Gluckman, B. J. (2011). Low cost electroencephalographic acquisition amplifier to serve as teaching and research tool. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (pp. 1888–1891).

  18. Sannelli, C., Vidaurre, C., Muller, K. R., & Blankertz, B. (2012). Common spatial pattern patches: Online evaluation on BCI-naive users. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (pp. 4744–4747).

  19. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., & Müller, K. R. (2008). Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine, 25(1), 41–56.

    Article  Google Scholar 

  20. Fazli, S., et al. (2015). Learning from more than one data source: data fusion techniques for sensorimotor rhythm-based Brain-Computer Interfaces. Proceedings of the IEEE, 103(6), 891–906.

    Article  Google Scholar 

  21. Abdulkader, S. N., Atia, A., & Mostafa, M.-S. M. (2015). Brain computer interfacing: Applications and challenges. Egyptian Informatics Journal, 16(2), 213–230.

    Article  Google Scholar 

  22. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.

    Article  Google Scholar 

  23. Benjamin Blankertz, G. C., Dornhege, G., Krauledat, M., & Müller, K.-R. (2007). The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects. Neuroimage, 37(2), 539–550.

    Article  Google Scholar 

  24. Blankertz, B., Kawanabe, M., Tomioka, R., Hohlefeld, F., Nikulin, V., & Müller, K.-R. (2007). Invariant common spatial patterns: Alleviating nonstationarities in brain-computer interfacing. Advances in Neural Information Processing Systems, 1–8.

  25. Fazli, S., Danóczy, M., & Schelldorfer, J. (2011). l1-penalized Linear Mixed-Effects Models for high dimensional data with application to BCI. Neuroimage.

  26. Lu, H., Plataniotis, K. N., & Venetsanopoulos, A. N. (2009). Regularized common spatial patterns with generic learning for EEG signal classification. In Proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 (pp. 6599–6602).

  27. Lotte, F., & Guan, C. (2011). Regularizing common spatial patterns to improve BCI designs: Unified theory and new algorithms. IEEE Transactions on Biomedical Engineering, 58(2), 355–362.

    Article  Google Scholar 

  28. Alamgir, M., Grosse-Wentrup, M., & Altun, Y. (2010). Multitask Learning for Brain-Computer Interfaces. In AISTATS’10: 13th International Conference on Articial Intelligence and Statistics (pp. 17–24).

  29. Devlaminck, D., Wyns, B., Grosse-Wentrup, M., Otte, G., & Santens, P. (2011). Multisubject learning for common spatial patterns in motor-imagery BCI. Computational Intelligence and Neuroscience, 2011.

  30. Kang, H., & Choi, S. (2014). Bayesian common spatial patterns for multi-subject EEG classification. Neural Networks, 57, 39–50.

    Article  Google Scholar 

  31. Grosse-Wentrup, M., & Buss, M. (2008). Multiclass common spatial patterns and information theoretic feature extraction. IEEE Transactions on Biomedical Engineering, 55(8), 1991–2000.

    Article  Google Scholar 

  32. Barachant, A., Bonnet, S., Congedo, M., & Jutten, C. (2012). Multiclass brain-computer interface classification by Riemannian geometry. IEEE Transactions on Biomedical Engineering, 59(4), 920–928.

    Article  Google Scholar 

  33. Li, Y., Kambara, H., Koike, Y., & Sugiyama, M. (2010). Application of covariate shift adaptation techniques in brain-computer interfaces. IEEE Transactions on Biomedical Engineering, 57(6), 1318–1324.

    Article  Google Scholar 

  34. Liu, Y. & Shao, J. (2010). High dimensionality reduction using CUR matrix decomposition and auto-encoder for web image classification. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (vol. 6298 LNCS, no. PART 2, pp. 1–12).

  35. Yang, J., Rübel, O., Prabhat, M. W. M., & Bowen, B. P. (2015). Identifying important ions and positions in mass spectrometry imaging data using CUR matrix decompositions. Analytical Chemistry, 87(9), 4658–4666.

    Article  Google Scholar 

  36. Zhao, X., Abdo, A. M. A., Xu, C., Geng, S., Zhang, J., & Memon, I. (2017). Dimension Reduction of Channel Correlation Matrix Using CUR-Decomposition Technique for 3-D Massive Antenna System. IEEE Access.

  37. Mitrovic, N., Asif, M. T., Rasheed, U., Dauwels, J., & Jaillet, P. (2013). CUR decomposition for compression and compressed sensing of large-scale traffic data. In IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC (pp. 1475–1480).

  38. Lee, H., & Choi, S. (2008). CUR+NMF for learning spectral features from large data matrix. Proceeding of the International Joint Conference on Neural Networks, 4, 1592–1597.

    Google Scholar 

  39. Dauwels, J., Srinivasan, K., Ramasubba, R. M., & Cichocki, A. (2011). Multi-channel EEG compression based on matrix and tensor decompositions. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing – Proceedings (pp. 629–632).

  40. Mahoney, M. W., & Drineas, P. (2009). CUR matrix decompositions for improved data analysis. Proceedings of the National Academy of Sciences of the United States of America, 106(3), 697–702.

    Article  MathSciNet  Google Scholar 

  41. Fauzi, H., Shapiai, M. I., Yusof, R., Remijn, G. B., Setiawan, N. A., & Ibrahim, Z. (2017). The design of spatial selection using CUR decomposition to improve common spatial pattern for multi-trial EEG classification (Vol. 751). Melaka: Springer.

    Google Scholar 

  42. Blankertz, B., Dornhege, G., Krauledat, M., Müller, K. R., & Curio, G. (2007). The non-invasive Berlin Brain-Computer Interface: Fast acquisition of effective performance in untrained subjects. Neuroimage, 37(2), 539–550.

    Article  Google Scholar 

  43. Samek, W., Vidaurre, C., Müller, K.-R., & Kawanabe, M. (2012). Stationary common spatial patterns for brain-computer interfacing. Journal of Neural Engineering, 9(2), 26013.

    Article  Google Scholar 

  44. Ramoser, H., Müller-Gerking, J., & Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8(4), 441–446.

    Article  Google Scholar 

  45. Gwin, J. T. & Ferris, D. (2011). High-density EEG and independent component analysis mixture models distinguish knee contractions from ankle contractions. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS (pp. 4195–4198).

  46. Lotte, F. & Guan, C. (2010). Spatially regularized common spatial patterns for EEG classification. In Proceedings - International Conference on Pattern Recognition (pp. 3712–3715).

  47. Liang, N.-Y., Saratchandran, P., Huang, G.-B., & Sundararajan, N. (2006). Classification of Mental Tasks From Eeg Signals Using Extreme Learning Machine. International Journal of Neural Systems, 16(1), 29–38.

    Article  Google Scholar 

  48. Ding, S., Zhang, N., Xu, X., Guo, L., & Zhang, J. (2015). Deep Extreme Learning Machine and Its Application in EEG Classification. Mathematical Problems in Engineering, 2015.

  49. Huang, G., Zhu, Q., & Siew, C. (2004). Extreme Learning Machine : A New Learning Scheme of Feedforward Neural Networks. IEEE International Joint Conference on Neural Networks, 2, 985–990.

    Google Scholar 

  50. Leamy, D. J., et al. (2014). An exploration of EEG features during recovery following stroke – implications for BCI-mediated neurorehabilitation therapy (pp. 1–16).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilman Fauzi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fauzi, H., Shapiai, M.I. & Khairuddin, U. Transfer Learning of BCI Using CUR Algorithm. J Sign Process Syst 92, 109–121 (2020). https://doi.org/10.1007/s11265-019-1440-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11265-019-1440-9

Keywords

Navigation