Skip to main content
Log in

Impact of traffic localization on communication rates in ad-hoc networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The effect of traffic distribution on communication rates and receiver complexity in ad-hoc networks is addressed, considering a network with constant density of users and a certain traffic model. Information theoretic upper bounds on communication rates are derived under an assumption that transmitting nodes as well as receiving nodes cooperate. It is shown that for the case of large signal attenuation the bounds hold even when the cooperation among users is limited to a certain region of the network domain. Furthermore, achievability bounds on communication rates are derived. The bounds rely on two proposed local cooperation strategies. A comparison shows that the upper bounds are tight and closely follow the achievability results. Finally, the impact of traffic localization on the receiver complexity is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. While the assumption of CSI at the transmitters can result in better communication rates among source destination pairs, it however, comes with an additional cost of feedback. In adhoc networks, it is exceedingly hard to obtain and use CSI feedback in rapidly varying channel conditions.

  2. It is worth mentioning that Lévêque and Telatar in [10] considered a slightly different expression for signal attenuation, more precisely r −α/2 in their “no absorbtion case”.

  3. If both source and destination nodes happen to be located in the same cell then we allow the source node to transmit it’s information to a relay node located in a neighboring cell. Then the relay node transmits the information to the destination. This increases the number of hops by one and does not affect the scaling.

References

  1. Bhattacharjee, S., Ammar, M. H., Zegura, E. W., Shah, V., & Fei, Z. (2000). Application-layer anycasting: A server selection architecture and use in a replicated Web service. IEEE/ACM Transactions on Networking, 8(4), 455–466.

    Article  Google Scholar 

  2. Bolcskei, H., Nabar, R. U., Oyman, O., & Paulraj, A. J. (2006). Capacity scaling laws in MIMO relay networks. IEEE Transactions on Wireless Communications, 5(6), 1433–1444.

    Article  Google Scholar 

  3. Cover, T. M., & Thomas, J. A. (1991). Elements of information theory. New York: Wiley.

    Book  MATH  Google Scholar 

  4. Francis, P., Jamin, S., Jin, C., Jin, Y., Raz, D., Shavitt, Y., & Zhang, L. (2001). IDMaps: A global Internet host distance estimation service. IEEE/ACM Transactions on Networking, 9(5), 525–540.

    Article  Google Scholar 

  5. Gastpar, M., & Vetterli, M. (2005). On the capacity of large gaussian relay networks. IEEE Transactions on Information Theory, 51(3), 765–779.

    Article  MathSciNet  Google Scholar 

  6. Grossglauser, M., & Tse, D. N. C. (2002). Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 10(4), 477–486.

    Article  Google Scholar 

  7. Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388–404.

    Article  MATH  MathSciNet  Google Scholar 

  8. Haenggi, M., & Puccinelli, D. (2005). Routing in ad hoc networks: A case for long hops. IEEE Communications Magazine, 43, 93–101.

    Article  Google Scholar 

  9. Jovičić, A., Vishwanath, P., & Kulkarni, S. R. (2004). Upper bounds to transport capacity of wireless networks. IEEE Transactions on Information Theory, 50(11), 2555–2565.

    Google Scholar 

  10. Leveque, O., & Telatar, E. (2005). Information theoretic upper bounds on the capacity of large extended ad-hoc wireless networks. IEEE Transactions on Information Theory, 51(3), 858–865.

    Article  MathSciNet  Google Scholar 

  11. Paulraj, A., Nabar, R., & Gore, D. (2003). Introduction to space-time wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  12. Philips, T. K., Panwar, S. S., & Tantawi, A. N. (1989). Connectivity properties of a packet radio network model. IEEE Transactions on Information Theory, 35, 1044–1047.

    Article  Google Scholar 

  13. Schlegel, C., & Grant, A. (2005). Coordinated multiuser communications. New York: Springer.

    Google Scholar 

  14. Schlegel, C., Kempter, R., & Kota, P. (2006). A novel random wireless packet multiple access method using CDMA. IEEE Transactions on Wireless Communications, 5(7), 1362–1370.

    Article  Google Scholar 

  15. Tabet, T., & Knopp, R. (2004). Bounds on the throughput capacity of wireless ad hoc networks with non-uniform traffic. In The First IEEE Communications Society Conference on Sensor and Ad Hoc Communications and Networks (SECON 2004), pp. 210–217.

  16. Toumpis, S., & Goldsmith, A. J. (2003). Capacity regions for wireless ad hoc networks. IEEE Transactions on Wireless Communications, 2(4), 736–748.

    Article  Google Scholar 

  17. Toumpis, S., & Goldsmith, A. J. (2004). Capacity bounds for three classes of wireless networks: Assymetric, cluster and hybrid. In The Fifth ACM International Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc 2004).

  18. Xie, L.-L., & Kumar, P. R. (2004). A network information theory for wireless communication: Scaling laws and optimal operation. IEEE Transactions on Information Theory, 50(5), 748–767.

    Article  MathSciNet  Google Scholar 

  19. Xie, L.-L., & Kumar, P. R. (2006). On the path-loss attenuation region for positive cost and linear scaling of transport capacity in wireless networks. Joint Special Issue of IEEE Transactions on Information Theory and IEEE/ACM Transactions on Networking, 52(6), 2313–2328.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Marat Burnashev for useful discussions and helping us with his insights in the derivation of the upper bound results. This work was supported by Alberta Ingenuity Fund and the Alberta iCORE Fund. Part of this material was presented at WCNC 2006 (Las Vegas, USA) and ICC 2006 (Istanbul, Turkey).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumeeth Nagaraj.

Appendices

Appendix 1

1.1 Bound on tail probabilities

Consider k random variables X 1,X 2,…, X k (possibly dependent) such that each X i = ∑ nl=1 Z i,l where Z i,1,Z i,2,…, Z i,n are independent Bernoulli r.v. with parameters p i,1,p i,2,…, p i,n respectively. For any i and l: \(\underline{p}\,\leq\,p_{i,l}\,\leq\,\bar{p}\). Then for any positive constant ε satisfying

$$ \lim\limits_{n \rightarrow \infty}(\varepsilon^2 n\underline{p}/4 - \hbox{ln}\, k)= +\infty $$
(23)

the following holds

$$ \begin{aligned} \lim\limits_{n \rightarrow \infty}\Pr[\forall i\,\,X_i \,\leq\,n\bar{p}(1+\varepsilon)] &=& 1 \\ \lim\limits_{n \rightarrow \infty}\Pr[\forall i\,\,n\underline{p}(1-\varepsilon)\,\leq\,X_i)] &=& 1 \end{aligned} $$

Proof

Each random variable X i has expectation \(\mu_i=\sum_{l=1}^{n}p_{i,l}\) and \(n\underline{p} {\,\leq\,}{\mu_i}\,\leq\,n\bar{p}\). We use the Chernoff inequality to bound the lower and upper tail probabilities. Consider,

$$ \Pr \left(X_i \,\geq\,\mu_i (1+\varepsilon) \right)\,\leq\,2e^{-\varepsilon^2\mu_i/4} $$

for 0 ≤ ε < 2e−1. Now, applying the union bound gives

$$ \Pr \left(\exists i,\ X_i\,\geq\,\mu_i (1+\varepsilon) \right)\,\leq\,\sum\limits_{i=1}^k \Pr \left( X_i \,\geq\,\mu_i (1+\varepsilon) \right)\,\leq\,k e^{-\varepsilon^2 n\underline{p}/4}\ = e^{-(\varepsilon^2 n \underline{p}/4-\hbox{ln}\, k)} \mathop{\rightarrow}\limits^{{{n} \rightarrow \infty} } 0 $$
(24)

and the first statement of the proposition follows from

$$ \begin{aligned} \Pr \left( \forall i,\ X_i\,\leq\,n\overline{p}(1+\varepsilon) \right) &\,\geq\, 1 - \Pr \left(\exists i, X_i \,\geq\, \mu_i (1+\varepsilon) \right) \end{aligned} $$
(25)
$$ \ge \left(1- e^{-(\varepsilon^2 n \underline{p}/4-\hbox{ln}\, k)}\right) \mathop{\rightarrow}\limits^{{{n} \rightarrow \infty} } 1. $$
(26)

Similarly we obtain

$$ \begin{aligned} \Pr \left( \forall i, X_i \,\geq\, n\overline{p}(1-\varepsilon) \right) &= 1 - \Pr \left(\exists i, X_i\,\leq\,n \overline{p} (1-\varepsilon) \right) \end{aligned} $$
(27)
$$ \ge \left(1- e^{-(\varepsilon^2 n \underline{p}/4-\hbox{ln}\, k)} \right)\mathop{\rightarrow}\limits^{{{n} \rightarrow \infty} } 1. $$
(28)

Appendix 2

2.1 Some important integrals

Let us define an integral over an intersection of two spheres of radius r 1 and r 2 centered at the origin of a d dimensional space by

$$ {\mathcal{I}}(r_1,r_2,m,\zeta) \mathop{=}\limits^{\rm def} \mathop{\int}\limits_{{\mathcal{S}}(r_2) \setminus {\mathcal{S}}(r_1)} \frac{\left[\sum_{j=1}^d x_j^2\right]^{\frac{m}{2}}}{1+\left[\sum_{j=1}^d x_j^2\right]^{\frac{\zeta}{2}}} \, \hbox{d} x_1 \, \ldots \hbox{d} x_d. $$
(29)

In order to bound it we make a coordinate exchange

$$ \begin{aligned} \,& x_1 = r \sin(\theta_1)\sin(\theta_2) \ldots \sin(\theta_{d-1}), x_2 = r \sin(\theta_1)\sin(\theta_2)\ldots \cos(\theta_{d-1}), \ldots, \\ \,& x_{d-1} =r\sin(\theta_1)\cos(\theta_2), x_d = r\cos(\theta_1) \end{aligned} $$

and the determinant of the transformation is

$$ \hbox{det}(J_d) = -r^{d-1} \sin^{d-2}(\theta_1)\sin^{d-3}(\theta_2) \ldots \sin(\theta_{d-2}). $$
(30)

Let us define a value

$$ S_d \mathop{\hbox{=}}\limits^{\rm def}\int_0^{\pi} \cdots \int_0^{\pi} \int_0^{2\pi} \frac{|\hbox{det}(J_d)|}{r^{d-1}}\, \\ \hbox{d} \theta_1 \,\ldots \\ \hbox{d} \theta_{d-1} = \left\{ \begin{array}{ll} \frac{2^{(d+1)/2} \pi^{(d-1)/2}}{(d-2)!!}, &\quad \hbox{ for } d \hbox{ odd } \\ \frac{2 \pi^{d/2}}{(\frac{1}{2}d-1)!}, & \quad \hbox{ for } d \hbox{ even }. \end{array} \right. $$
(31)

Then (29) can be written as

$$ {\mathcal{I}}(r_1,r_2,m,\zeta) = S_d \int\limits_{r_1}^{r_2} \frac{r^{m+d-1}}{1+r^\zeta} \\ \hbox{d} r $$
(32)

Easy bounding arguments lead to the following bounds

  • Case 1 ζ < m + d:

    $$ \begin{aligned} &\underline{c}_{m,\zeta,d} \left( r_2^{m-\zeta+d} - r_1^{m-\zeta+d} \right) < \mathcal{I}(r_1,r_2,m,\zeta) < \overline{c}_{m,\zeta,d} \left ( r_2^{m-\zeta+d} - r_1^{m-\zeta+d}\right) &\hbox{ for } r_1, r_2 \ge 1 \\ &\underline{c}_{m,d} \left( r_2^{m+d} - r_1^{m+d} \right) < \mathcal{I}(r_1,r_2,m,\zeta) < \overline{c}_{m,d} \left( r_2^{m+d} - r_1^{m+d}\right) &\hbox{ for } r_1 < r_2 < 1 \\ &\underline{c}_{m,\zeta,d} r_2^{m-\zeta+d} - \underline{c}_{m,d}\left(1-r_1^{m+d} \right) < \mathcal{I}(r_1,r_2,m,\zeta) < \overline{c}_{m,\zeta,d} r_2^{m-\zeta+d} - \overline{c}_{m,d} \left(1+r_1^{m+d}\right) & \hbox{ for } r_1 < 1 < r_2 \end{aligned} $$
  • Case 2 ζ = m + d:

    $$ \begin{aligned} \,& \frac{S_d}{2} \left(\hbox{ln}\, r_2 - \hbox{ln}\, r_1 \right) < \mathcal{I}(r_1,r_2,m,\zeta) < S_d\left(\hbox{ln}\, r_2 - \hbox{ln}\, r_1 \right) & \hbox{ for } r_1, r_2 \ge 1 \\ \,&\underline{c}_{m,\zeta,d} \left( r_2^{m+d} - r_1^{m+d} \right) < \mathcal{I}(r_1,r_2,m,\zeta) < \overline{c}_{m,\zeta,d} \left( r_2^{m+d} - r_1^{m+d}\right) & \hbox{ for } r_1 < r_2 < 1 \\ \,& \underline{c}_{m,d} \left(1-r_1^{m+d} \right)+ \frac{{\hbox{ln}}\, r_2}{2} < \mathcal{I}(r_1,r_2,m,\zeta) < \overline{c}_{m,d} \left(1-r_1^{m+d}\right) + \hbox{ln}\, r_2 & \hbox{ for } r_1 < 1 < r_2 \end{aligned} $$
  • Case 3 ζ > m + d:

    $$ \begin{aligned} & \underline{c}_{m,\zeta,d}\left( r_1^{m-\zeta+d} - r_2^{m-\zeta+d} \right) < \mathcal{I}(r_1,r_2,m,\zeta) < \overline{c}_{m,\zeta,d}\left( r_1^{m-\zeta+d} - r_2^{m-\zeta+d} \right) &\hbox{ for } r_1, r_2 \ge 1 \\ & \underline{c}_{m,d}\left( r_2^{m+d} - r_1^{m+d} \right) < \mathcal{I}(r_1,r_2,m,\zeta) < \overline{c}_{m,d}\left( r_2^{m+d} - r_1^{m+d}\right) &\hbox{ for } r_1 < r_2 < 1 \\ & \underline{c}_{m,\zeta,d} \left(1-r_2^{m-\zeta+d}\right) + \underline{c}_{m,d} \left(1-r_1^{m+d}\right) < \mathcal{I}(r_1,r_2,m,\zeta) < \overline{c}_{m,\zeta,d}\left(1-r_2^{m-\zeta+d} \right) + \\ &+ \overline{c}_{m,d}\left(1-r_1^{m+d}\right) & \hbox{ for } r_1 < 1 < r_2 \end{aligned} $$

    where \(\underline{c}_{m,\zeta,d} = |S_d/(2m+2d-2\zeta)|\), \(\underline{c}_{m,d} = S_d/(2m+2d)\), \(\overline{c}_{m,d}= S_d/(m+d)\) and \(\overline{c}_{m,\zeta,d} = |S_d/(m+d-\zeta)|\) are positive constants with respect to r1 and r2.

Appendix 3

3.1 Proof of Theorem 1

By \(\Pr({\mathbf{x}}\rightarrow D_{{\mathbf{x}},i})\) we will denote the probability that \({\mathbf{x}}\) chooses its destination \({\mathbf{y}}\) inside the same cell \(D_{{\mathbf{x}},i}\)

$$ \Pr({\mathbf{x}}\rightarrow D_{{\mathbf{x}},i}) = \frac{\int\limits_{D_{{\mathbf{x}},i}} \frac{1}{1+\left[\sum_{j=1}^d(x_j-y_j)^2\right]^{\beta/4}} \\ \hbox{d} y_1 \ldots \\ \hbox{d} y_d }{\int\limits_{\left[0,n^{1/d}\right]^{d}} \frac{1}{1+\left[\sum_{j=1}^d(x_j-y_j)^2\right]^{\beta/4}} \\ \hbox{d} y_1 \ldots \\ \hbox{d} y_d } $$
(33)

To make an upper bound on this probability we integrate in the nominator over a sphere \({\mathcal{S}}_{{\mathbf{x}}}(\sqrt{d}\overline{b}(n)) \supset D_{{\mathbf{x}},i}\). In the denominator we integrate over 1/2d part of the sphere \({\mathcal{S}}_{{\mathbf{x}}}(\frac{1}{2}n^{1/d})\) contained in [0,n 1/d]d. Thus

$$ \Pr({\mathbf{x}}\rightarrow D_{{\mathbf{x}},i})\,\leq\,2^d\frac{{\mathcal{I}}(0,\sqrt{d}\overline{b}(n),0,\frac{\beta}{2})}{{\mathcal{I}}(0,\frac{1 }{2}n^{1/d},0,\frac{\beta}{2})} $$
(34)

We use the fact that slightly more than half of the transmissions which go outside the cell, go to the other domain due to the chess board pattern. Therefore, \(\Pr({\mathbf{x}} \rightarrow {\mathcal{D}}_{\mathbf{y}}) \ge (1-\Pr({\mathbf{x}}\rightarrow D_{{\mathbf{x}},i}))/2\). We consider the following cases.

Case 0 ≤ β < 2d. Applying the upper and lower bounds on \({\mathcal{I}}\) calculated in Appendix 2 to (34) we get

$$ \begin{aligned} \forall {\mathbf{x}} \in D_{{\mathbf{x}},i}, \Pr({\mathbf{x}}\rightarrow D_{{\mathbf{x}},i})\,\leq\,2^d \frac{\overline{c}_{0,\frac{\beta}{2},d}(\sqrt{d}\overline{b}(n))^{d-\frac{\beta}{2}}}{ \underline{c}_{0,\frac{\beta}{2},d}(\frac{1}{2}n^{1/d})^{d-\frac{\beta}{2}}} \end{aligned} $$
(35)

Substituting for \(\overline{b}(n) \le \left[2^{2d+1-\beta/2}(\overline{c}_{0,\beta/2,d})(\underline{c}_{0,\beta/2,d}^{-1})d^{d/2- \beta/4}\right]^{\frac{1}{\beta/2-d}} n^{\frac{1}{d}}\), we get \(\Pr({\mathbf{x}}\rightarrow D_{{\mathbf{x}},i}) \le \frac{1}{2}\) and therefore \(\Pr({\mathbf{x}}\rightarrow {\mathcal{D}}_{\mathbf{y}}) \ge \frac{1}{4}\).

Case β = 2d.

$$ \begin{aligned} \forall {\mathbf{x}} \in D_{{\mathbf{x}},i}, \Pr({\mathbf{x}}\rightarrow D_{{\mathbf{x}},i})\,\leq\,2^d \frac{\overline{c}_{0,d}\hbox{ln\,}(\sqrt{d}\overline{b}(n))}{\underline{c}_{0,d}\hbox{ln\,}(\frac{1}{2}n^{1/d})}\,\leq\,\frac{2^{d+1}\left(\frac{1}{d} + \frac{1}{2} \hbox{ln\,} d + \hbox{ln\,} \overline{b}(n) \right)}{\frac{1}{d} \hbox{ln\,} n - \hbox{ln}\, 2} \end{aligned} $$
(36)

substituting for \(\overline{b}(n) \le \frac{1}{4}n^{\frac{1}{d2^{d+2}}} \) we get \(\Pr({\mathbf{x}}\rightarrow D_{{\mathbf{x}},i}) {\le}\frac{1}{2}\) and \(\Pr({\mathbf{x}}\rightarrow {\mathcal{D}}_{{\mathbf{y}}}) \ge \frac{1}{4}\).

Case β > 2d.

$$ \begin{aligned} \forall {\mathbf{x}} \in D_{{\mathbf{x}},i}, \Pr({\mathbf{x}}\rightarrow D_{{\mathbf{x}},i})\,\leq\,2^d \frac{\frac{1}{d}(\sqrt{d}\overline{b}(n))^{d}}{\frac{1}{d}}\,\leq\,(2\sqrt{d}\overline{b}(n))^d < \frac{1}{2} \end{aligned} $$
(37)

for \(\overline{b}(n) < \frac{1}{2\sqrt{d}2^{1/d}}\). Thus \(\Pr({\mathbf{x}} \rightarrow {\mathcal{D}}_{\mathbf{y}}) \ge 1/4\).

Appendix 4

4.1 Proof of Theorem 2

Proof

We consider

$$ \begin{aligned} \frac{1}{n}{\mathbb{E}}\sum\limits_{i=1}^{n/2}\sum\limits_{j=1}^{n/2}\frac{1}{1+| {\mathbf{x}}_i-{\mathbf{y}}_j|^{\alpha}} &= \frac{1}{n}\int\limits_{{\mathcal{D}}_{{\mathbf{x}}}} \int\limits_{{\mathcal{D}}_{{\mathbf{y}}}} \frac{1}{1+\left[\sum\limits_{l=1}^d(x_l-y_l)^2\right]^{\frac{\alpha}{2}}} \, \hbox{d} x_1 \ldots \hbox{d} x_d \, \hbox{d} y_1 \ldots \hbox{d} y_d \\ & \le \frac{1}{n} \sum\limits_{i=1}^{\frac{n}{2\overline{b}(n)^d}} \int\limits_{D_{{\mathbf{x}},i}}\int\limits_{{\mathcal{D}}_{{\mathbf{y}}}} \frac{1}{1+\left[\sum\limits_{l=1}^d (x_l-y_l)^2\right]^{\frac{\alpha}{2}}} \, \hbox{d} x_1 \ldots \hbox{d} x_d \, \hbox{d} y_1 \ldots \hbox{d} y_d. \end{aligned} $$
(38)

Consider an arbitrary cell \(D_{{\mathbf{x}},i} \subset {\mathcal{D}}_{{\mathbf{x}}}\). There are at most 3d − 1 neighboring cells \(D_{{\mathbf{y}},j}^{n} \subset {\mathcal{D}}_{{\mathbf{y}}},\) j = 1…3d − 1 such that the intersection of \(D_{{\mathbf{x}},i} \cap D_{{\mathbf{y}},j}^n\) is nonempty.

All other cells of \({\mathcal{D}}_{{\mathbf{y}}}\) are separated from \(D_{{\mathbf{x}},i}\) by a distance of at least \(\overline{b}(n)\). Let \({\mathcal{D}}_{{\mathbf{y}}}^* \mathop{=}\limits^{\rm def} {\mathcal{D}}_{{\mathbf{y}}}{\setminus}\cup_{j=1}^{3^d-1} D_{{\mathbf{y}},j}^n\). Then, (38) is equal to

$$ \begin{aligned} \,& \frac{1}{n} \sum_{i=1}^{\frac{n}{2\overline{b}(n)^d}} \Bigg( \sum_{j=1}^{3^d-1} \int \limits_{D_{{\mathbf{x}},i}} \int \limits_{D_{{\mathbf{y}},j}^n} \frac{1}{1+\left[\sum \limits_{l=1}^d (x_l-y_l)^2\right]^{\frac{\alpha}{2}}} \hbox{d} x_1 \ldots \hbox{d} x_d \cdot \hbox{d} y_1 \ldots \hbox{d} y_d \\ \,&+ \int \limits_{D_{{\mathbf{x}},i}} \int \limits_{{\mathcal{D}}_{{\mathbf{y}}}^*} \frac{1}{1+\left[\sum \limits_{l=1}^d (x_l-y_l)^2\right]^{\frac{\alpha}{2}}} \hbox{d} x_1 \ldots \hbox{d} x_d \hbox{d} y_1 \ldots \hbox{d} y_d \Bigg) \\ \,&\,\leq\,\frac{1}{n} \sum_{i=1}^{\frac{n}{2\overline{b}(n)^d}} \left( (3^d-1) K(\overline{b}(n),\alpha,d)+\overline{b}(n)^d{\mathcal{I}}(\overline{b}(n), \sqrt{d}n^{1/d},0,\alpha)\right) \end{aligned} $$
(39)

where in the second term for any \({\mathbf{x}} \in D_{{\mathbf{x}},i}\) we integrate over \(({\mathcal{S}}_{{\mathbf{x}}}(\sqrt{d}n^{1/d})\setminus{\mathcal{S}}_{{\mathbf{x}}}(\overline{b}( n)))\supset {\mathcal{D}}_{{\mathbf{y}}}^*\). The first term is equal to

$$ \begin{aligned} K(\overline{b}(n),\alpha,d) &\mathop{=}\limits^{\rm def} \int\limits_{[-\overline{b}(n),0]\times[0,\overline{b}(n)]^{d-1}} \int\limits_{[0,\overline{b}(n)]^d} \frac{1}{1+\left[\sum\limits_{l=1}^d (x_l-y_l)^2\right]^{\frac{\alpha}{2}}} \hbox{d} y_1 \ldots \hbox{d} y_d \hbox{d} x_1 \ldots \hbox{d} x_d \end{aligned} $$
(40)

With exchange of variables \(\tilde{x}_1 = -x_1\), \(\tilde{x}_2 = x_2\),…, \(\tilde{x}_d = x_d\), \(\tilde{y}_1 = y_1\), and \(\tilde{y}_2 = y_2-x_2\),…, \(\tilde{y}_d = y_d-x_d\) we get

$$ \begin{aligned} \,&K(\overline{b}(n),\alpha,d) = \int \limits_0^{\overline{b}(n)} \ldots \int \limits_0^{\overline{b}(n)} \int\limits_{-\tilde{x}_d}^{\overline{b}(n)-\tilde{x}_d} \ldots \int\limits_{-\tilde{x}_2}^{\overline{b}(n)-\tilde{x}_2} \frac{1}{1+\biggl[(\tilde{x}_1+\tilde{y}_1)^2+\sum\limits_{j=2}^d \tilde{y}_j^2\biggr]^{ \frac{\alpha}{2}}} \hbox{d} \tilde{y}_1 \ldots \, \hbox{d} \tilde{y}_d \, \hbox{d} \tilde{x}_1 \ldots \hbox{d} \tilde{x}_d \\ \,&\le \int \limits_0^{\overline{b}(n)} \ldots \int \limits_0^{\overline{b}(n)} \int \limits_{-\overline{b}(n)}^{\overline{b}(n)} \ldots \int \limits_{-\overline{b}(n)}^{\overline{b}(n)} \frac{1}{1+\left[\tilde{x}_1^2+\tilde{y}_1^2+ \sum \limits_{j=2}^d \tilde{y}_j^2\right]^{\frac{\alpha}{2}}} \hbox{d} \tilde{y}_1 \ldots \, \hbox{d} \tilde{y}_d \, \hbox{d} \tilde{x}_1 \ldots \hbox{d} \tilde{x}_d\\ \,&= \overline{b}(n)^{d-1} \int \limits_0^{\overline{b}(n)} \int \limits_{-\overline{b}(n)}^{\overline{b}(n)}\ldots \int \limits_{-\overline{b}(n)}^{\overline{b}(n)} \frac{1}{1+\left[\tilde{x}_1^2+\tilde{y}_1^2+ \sum \limits_{j=2}^d\tilde{y}_j^2\right]^{\frac{\alpha}{2}}} \hbox{d} \tilde{y}_1 \ldots \, \hbox{d} \tilde{y}_d \, \hbox{d} \tilde{x}_1\,\leq\,\overline{b}(n)^{d-1}\mathcal{I}(0,\sqrt{d+1}\overline{b}(n),1,\alpha) \end{aligned} $$

where we integrate over a d + 1-dimensional sphere of radius \(\overline{b}(n)\sqrt{d+1}\) covering the domain \([-\overline{b}(n),\overline{b}(n)]^{d+1}\). Substituting this result into (39) and using the upper bounds from Appendix 2 leads to

$$ \begin{aligned} \frac{1}{n}{\mathbb{E}}\sum\limits_{i=1}^{n/2}\sum\limits_{j=1}^{n/2}\frac{1}{1+| {\mathbf{x}}_i-{\mathbf{y}}_j|^{\alpha}}\,\leq\,c(d,\alpha) \times\left\{ \begin{array}{ll} n^{\frac{d-\alpha}{d}}, & 0 \le \alpha < d \\ \hbox{ln}\, n, & \alpha = d \\ \overline{b}(n)^{d-\alpha}, & d < \alpha < d+1 \\ \frac{\hbox{ln}\, \overline{b}(n)}{\overline{b}(n)}, & \alpha = d+1 \\ \frac{1}{\overline{b}(n)}, & \alpha > d+1,\, \end{array} \right. \end{aligned} $$
(41)

where c(d,α) is independent of \(\overline{b}(n)\) and n. The upper bound on transmission rate per communicating pair is obtained by substituting (4) into (8)

$$ R \le {\mathbb{E}}C(\user2{G},P) \le c(d,\alpha) \times \left\{ \begin{array}{ll} \hbox{ln}\, n, & 0 \le \alpha < d \\ \hbox{ln}\,(\hbox{ln}\, n), & \alpha = d \\ \overline{b}(n)^{d-\alpha}, & d < \alpha < d+1 \\ \frac{\hbox{ln}\, \overline{b}(n)}{\overline{b}(n)}, & \alpha = d+1 \\ \frac{1}{\overline{b}(n)}, & \alpha > d+1 \end{array} \right. $$
(42)

.

Finally, we use the bound on \(\overline{b}(n)\) from Theorem 1 to obtain the upper bounds on the rate per communicating pair for different cases of β. The results are tabulated in Table 2.

Appendix 5

5.1 Proof of Lemma 5

The interference experienced by a particular node \({\mathbf{x}} =(x_1, x_2, \ldots, x_d) \in D_i\) can be upper bounded as

$$ I\,\leq\,\int \limits_{{\mathcal{D}}\setminus (D_i \bigcup \limits_{j} D_j^{{\rm n}}) } \frac{P}{1+\left[ \sum \limits_{i=1}^{d}(x_i - x^{\prime}_i)^2\right]^{\frac{\alpha}{2}}} \\ \hbox{d} x^{\prime}_1 \ldots \\ \hbox{d} x^{\prime}_d. $$
(43)

assuming that all the nodes outside D i ’s neighbors transmit. We integrate over \({\mathcal{S}}_{{\mathbf{x}}}(\sqrt{d}n^{1/d}){\setminus}{\mathcal{S}}_{{\mathbf{x}}}(\underline{b}(n)) \supset {\mathcal{D}}{\setminus}(D_i \bigcup \limits_j D_j^{\rm n})\) and get

$$ I\,\leq\,P{\mathcal{I}}(\underline{b}(n),\sqrt{d}n^{1/d},0,\alpha) \rightarrow 0 $$
(44)

for α > d and \(n \rightarrow \infty \).

For α > d the fraction inside the logarithm tends to zero when n goes to infinity. Hence we can use the inequality ln(1 + x) ≥ x/2 (for 0 < x < 1) and obtain

$$ R_{\rm cell}\,\geq\,\frac{WP\underline{b}(n)^d}{4\hbox{ln}\, 2(2L+1)^d 2^{\alpha+1} d^{\frac{\alpha}{2}}\underline{b}(n)^{\alpha}(I+N_0)}. $$
(45)

Substituting (44) in (45) gives the result.

Appendix 6

6.1 Proof of Lemma 6

Node \({\mathbf{x}} = (x_1, x_2, \ldots x_d)\) in the network domain chooses its destination \({\mathbf{x}}^{\prime}\) randomly according to the probability distribution with density function given by

$$ \pi_{{\mathbf{x}}}({\mathbf{x}}^{\prime})= \frac{c_{\mathbf{x}}(\beta)}{1+\left[\sum\limits_{j=1}^d(x_ j - x^{\prime}_j)^2 \right]^{\frac{\beta}{4}}}, \quad\hbox{where}, c_{\mathbf{x}}(\beta) = \left[\int\limits_{{\mathcal{D}}} \frac{1}{1+\left[\sum_{j=1}^d(x_j-x^{\prime}_j)^2 \right]^{\beta/4}} \hbox{d} x^{\prime}_1 \hbox{d} x^{\prime}_2 \ldots \hbox{d} x^{\prime}_d \right]^{-1} $$
(46)

is a normalization constant. We upper bound the average distance from \({\mathbf{x}}\) to its destination as follows

$$ \bar{s} = {\mathbb{E}}|{\mathbf{x}}-{\mathbf{x}}^{\prime}|\,\leq\,c_{\mathbf{x}}(\beta) \int_{{\mathcal{D}}} \frac{\left[\sum_{j=1}^d x^{'2}_j\right]^{\frac{1}{2}}}{1+\left[\sum_{j=1}^d x^{'2}_j\right]^{\frac{\beta}{4}}} \hbox{d} x^{\prime}_1 \hbox{d} x^{\prime}_2 \ldots \hbox{d} x^{\prime}_d\,\leq\,\frac{{\mathcal{I}}(0,\sqrt{d}n^{1/d},1,\beta/2)}{{\mathcal{I}}(0,\frac{1}{2}n^{1/d}, 0,\beta/2)}. $$
(47)

Simplifying (47), we obtain (19) for different values of d and β.

Appendix 7

7.1 Proof of Lemma 7

We numerate the routes between SD pairs with index l = 1…n/2 and denote the probability that route l passes through cell D i by p l,i. We observe that this probability does not depend on l but may depend on i. Hence, \({\forall}l, p_{l,i} =p_i\). Consider

$$ \begin{aligned} \sum\limits_{i=1}^{n/\underline{b}(n){^d}} {\mathbb{E}} {\hbox{{\{Number of paths through }}} D_i\} = {\mathbb{E}} {\hbox{\{Number of cells crossed by all}}\, n\, {\hbox{paths}}\}\\\,\leq\,{\mathbb{E}} {\hbox{\{Length of all}}\,n\, {\hbox{paths}}\}/\underline{b}(n) = n \bar{s}/\underline{b}(n) \end{aligned}$$
(48)

On the other hand

$$ {\mathbb{E}} \{\hbox{Number of paths through $D_i$}\} = \sum_{l=1}^n p_{l,i} = n p_{i}. $$
(49)

Now consider cells in the center of the domain i.e. in a sub-domain \(\tilde{{\mathcal{D}}} = [1/4n^{1/d},3/4n^{1/d}]^d\). The probability p i is the largest for the central cell \((\forall i, p_i \le p_{\rm c})\). From geometric reasons it follows that p i /p c ≥1/2d. Therefore, from (48) we have

$$ \frac{n\bar{s}}{\underline{b}(n)} = \sum_{i=1}^{n/\underline{b}(n)^d} {\mathbb{E}} \{\hbox{Number of paths through $D_i$}\}\,\geq\,\frac{1}{2^{d}}\sum_{D_i \in \tilde{{\mathcal{D}}}} n p_{\rm c}\,\geq\,\frac{1}{2^{2d}} \frac{n^2}{\underline{b}(n)^d} p_{\rm c} $$
(50)

Thus

$$ p_{l,i} = p_{i} \,\leq\,p_{\rm c}\,\leq\,2^{2d} \frac{\bar{s} \underline{b}(n)^{d-1}}{n}. $$
(51)

The proof of statement (20) now follows from the Appendix 1 for m = n, \(\underline{p} = \underline{b}(n)^d /n \), \(\overline{p}= 2^{2d} \frac{\bar{s} \underline{b}(n)^{d-1}}{n}\), \(k=n/\underline{b}(n)^d\) and ε = 1/2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagaraj, S., Truhachev, D. & Schlegel, C. Impact of traffic localization on communication rates in ad-hoc networks. Wireless Netw 16, 497–510 (2010). https://doi.org/10.1007/s11276-008-0149-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-008-0149-7

Keywords

Navigation