Skip to main content
Log in

Increasing throughput in dense 802.11 networks by automatic rate adaptation improvement

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Rate control algorithms for commercial 802.11 devices strongly rely on packet losses for their adaptation. As a result, they give poor performance in dense networks because they are not able to distinguish packet losses related to channel error from packet losses due to collision. In this paper, we evaluate automatic rate adaptation algorithms in IEEE 802.11 dense networks. A certain number of works in the literature address this problem, but they demand modifications of the IEEE standard, or depend on some special feature not available in off-the-shelf devices. In this context, we propose a new automatic rate control algorithm which is simple, easy to implement, standards-compliant, and well-suited for crowded 802.11 networks. Our approach consists of measuring the contention level, inferring the collision probability, and choosing transmission rates which maximize throughput. Results from simulation and real experiments show throughput improvement of up to 100% from our mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. Unpublished algorithms are trade secrets.

References

  1. Acharya, P. A., Sharma, A., Belding, E. M., Almeroth, K. C., & Papagiannaki, K. (2010). Rate adaptation in congested wireless networks through real-time measurements. IEEE Transactions on Mobile Computing, 99 (PrePrints).

  2. Acharya, P. A. K., Sharma, A., Belding, E. M., Almeroth, K. C., & Papagiannaki, K. (2008). Congestion-aware rate adaptation in wireless networks: A measurement-driven approach. In IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON), pp. 1–9.

  3. Aguayo, D., Bicket, J., Biswas, S., Judd, G., & Morris, R. (2004). Link-level measurements from an 802.11b mesh network. In ACM special interest group on data communication (SIGCOMM), vol. 34, pp. 121–132.

  4. ARC: Additions to the NS network simulator to handle Ricean and Rayleigh fading. http://www.ece.cmu.edu/wireless/downloads.html. Last access Dec 18, 2008.

  5. Baldo, N., Maguolo, F., Merlin, S., Zanella, A., Zorzi, M., Melpignano, D., & Siorpaes, D. (2008). GORA: Goodput optimal rate adaptation for 802.11 using medium status estimation. In IEEE international conference on communications (ICC), pp. 4916–4921.

  6. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  Google Scholar 

  7. Biaz, S., & Wu, S. (2008). ERA: Effective rate adaptation for WLANs. In International IFIP-TC6 networking conference on ad hoc and sensor networks, wireless networks, next generation internet (NETWORKING), pp. 901–913.

  8. Biaz, S., & Wu, S. (2008). Loss differentiated rate adaptation in wireless networks. In IEEE wireless communications and networking conference (WCNC), pp. 1639–1644.

  9. Bicket, J. C. (2005). Bit-rate selection in wireless networks. Master’s thesis, Department of Electrical Engineering and Computer Science-Massachusetts Institute of Technology.

  10. Cardoso, K. V., & de Rezende, J. F. (2009). Accurate hidden Markov modeling of packet losses in indoor 802.11 networks. IEEE Communications Letters, 13(6), 417–419.

    Article  Google Scholar 

  11. Chaporkar, P., Proutiere, A., & Radunovic, B. (2010). Rate adaptation games in wireless LANs: Nash equilibrium and price of anarchy. In IEEE international conference on computer communications (INFOCOM), pp. 2052–2060.

  12. Cheng Chen, C., Luo, H., Seo, E., Vaidya, N. H., & Wang, X. (2007). Rate-adaptive framing for interfered wireless networks. In IEEE international conference on computer communications (INFOCOM), pp. 1325–1333.

  13. Choi, J., Na, J., Park, K., & kwon Kim, C. (2007). Adaptive optimization of rate adaptation algorithms in multi-rate WLANs. In IEEE International conference on network protocols (ICNP), pp. 144–153.

  14. Ergin, M. A., Ramachandran, K., & Gruteser, M. (2008). An experimental study of inter-cell interference effects on system performance in unplanned wireless LAN deployments. Computer Networks, 52(14), 2728–2744.

    Article  MATH  Google Scholar 

  15. Floyd, S., & Jacobson, V. (1993). Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1(4), 397–413.

    Article  Google Scholar 

  16. Ganu, S., Ramachandran, K., Gruteser, M., Seskar, I., & Deng, J. (2006). Methods for restoring MAC layer fairness in IEEE 802.11 networks with physical layer capture. In International workshop on multi-hop ad hoc networks: From theory to reality (REALMAN), pp. 7–14.

  17. Ha, J., Lee, K., Kim, H., & Kang, I. (2008). A snooping rate adaptation algorithm for IEEE 802.11 WLANs. In International Symposium on wireless pervasive computing (ISWPC), pp. 606–609.

  18. Haratcherev, I., Langendoen, K., Lagendijk, R., & Sips, H. (2004). Hybrid rate control for IEEE 802.11. In ACM International workshop on mobility management & wireless access protocols (MobiWac), pp. 10–18.

  19. Ho, C. K., Oostveen, J., & Linnartz, J. P. M. G. (2009). Rate adaptation using acknowledgement feedback in finite-state Markov channels with collisions. IEEE Transactions on Wireless Communications, 8(6), 3226–3239.

    Article  Google Scholar 

  20. Hoffmann, C., Manshaei, M. H., & Turletti, T. (2005). CLARA: Closed-loop adaptive rate allocation for IEEE 802.11 wireless LANs. In IEEE international conference on wireless networks, communications and mobile computing (WirelessCom), vol. 1, pp. 668–673.

  21. Holland, G., Vaidya, N., & Bahl, P. (2001). A Rate-adaptive MAC protocol for multi-hop wireless networks. In ACM international conference on mobile computing and networking (MobiCom), pp. 236–251.

  22. IEEE 802.11. (1999). Edition (ISO/IEC 8802-11: 1999). IEEE standards for information technology—telecommunications and information exchange between systems—local and metropolitan area network—specific requirements—Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) Specifications, 1999.

  23. Jain, R. K., Chiu, D. M. W., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer system. Tech. rep., Digital Equipament Corporation.

  24. Ji, Z., Yang, Y., Zhou, J., Takai, M., & Bagrodia, R. (2004). Exploiting medium access diversity in rate adaptive wireless LANs. In ACM international conference on mobile computing and networking (MobiCom), pp. 345–359.

  25. Joshi, T., Ahuja, D., Singh, D., & Agrawal, D. P. (2008). SARA: Stochastic automata rate adaptation for IEEE 802.11 networks. IEEE Transactions on Parallel and Distributed Systems, 19(11), 1579–1590.

    Article  Google Scholar 

  26. Judd, G., Wang, X., & Steenkiste, P. (2008). Efficient channel-aware rate adaptation in dynamic environments. In ACM international conference on mobile systems, applications, and services (MobiSys), pp. 118–131.

  27. Kamerman, A., & Monteban, L. (1997). WaveLAN-II: A high-performance wireless LAN for the unlicensed band. Bell System Technical Journal, 2(3), 118–133.

    Article  Google Scholar 

  28. Kim, J., Kim, S., Choi, S., & Qiao, D. (2006). CARA: Collision-aware rate adaptation for IEEE 802.11 WLANs. In IEEE international conference on computer communications (INFOCOM), pp. 1–11.

  29. Kim, S., Lee, S. J., & Choi, S. (2006). The impact of IEEE 802.11 MAC strategies on multi-hop wireless mesh networks. In IEEE workshop on wireless mesh networks (WiMesh), pp. 38–47.

  30. Koçi, N., & Marina, M. K. (2009). Understanding the role of multi-rate retry mechanism for effective rate control in 802.11 wireless LANs. In IEEE local computer networks, 2009, pp. 305–308.

  31. Kumar, A., Altman, E., Miorandi, D., & Goyal, M. (2005). New insights from a fixed point analysis of single cell IEEE 802.11 WLANs. In IEEE International conference on computer communications (INFOCOM), pp. 1550–1561.

  32. Kurth, M., Zubow, A., & Redlich, J. P. (2006). Multi-channel link-level measurements in 802.11 mesh networks. In International conference on wireless communications and mobile computing (IWCMC), pp. 937–944.

  33. Lacage, M., Manshaei, M. H., & Turletti, T. (2004). IEEE 802.11 rate adaptation: A practical approach. In ACM international Symposium on modeling, analysis and simulation of wireless and mobile systems (MSWiM), pp. 126–134.

  34. Lee, J., Kim, W., Lee, S. J., Jo, D., Ryu, J., Kwon, T., & Choi, Y. (2007). An experimental study on the capture effect in 802.11a networks. In International workshop on wireless network testbeds, experimental evaluation and characterization (WinTECH), pp. 19–26.

  35. Lv, S., Wang, X., Zhou, X., & Liu, C. (2007). Efficient rate adaptation in multi-rate 802.11 networks. In IEEE Symposium on computers and communications (ISCC), pp. 545–550.

  36. MadWifi: MadWifi.http://madwifi-project.org. Last access Dec 18, 2008.

  37. Mhatre, V. (2007). Enhanced wireless mesh networking for ns-2 simulator. ACM SIGCOMM Computer Communication Review, 37(3), 69–72.

    Article  Google Scholar 

  38. Ngugi, A. N., Chen, Y. P., & Li, Q. (2009). Rate adaptation with NAK-aided loss differentiation in 802.11 wireless networks. In IEEE global communications conference (GLOBECOM), pp. 3073–3078.

  39. Pang, Q., Leung, V. C., & Liew, S. C. (2005). A rate adaptation algorithm for IEEE 802.11 WLANs based on MAC-layer loss differentiation. In International conference on broadband networks (BROADNETS).

  40. Papagiannaki, K., Yarvis, M., & Conner, W. S. (2006). Experimental characterization of home wireless networks and design implications. In IEEE international conference on computer communications (INFOCOM), pp. 1–13.

  41. del Prado Pavon, J., & Choi, S. (2003). Link adaptation strategy for IEEE 802.11 WLAN via received signal strength measurement. In IEEE international conference on communications (ICC), vol. 2, pp. 1108–1113.

  42. Qiao, D., & Choi, S. (2005). Fast-responsive link adaptation for IEEE 802.11 WLANs. In IEEE international conference on communications (ICC), vol. 5, pp. 3583–3588.

  43. Qiao, D., Choi, S., & Shin, K. G. (2002). Goodput analysis and link adaptation for IEEE 802.11a wireless LANs. IEEE Transactions on Mobile Computing, 1(4), 278–292.

    Article  Google Scholar 

  44. Ramachandran, K., Kremo, H., Gruteser, M., Spasojević, P., & Šeškar, I. (2007). Experimental scalability analysis of rate adaptation techniques in congested IEEE 802.11 networks. In IEEE international Symposium on world of wireless, mobile and multimedia networks (WoWMoM).

  45. Raychaudhuri, D., Seskar, I., Ott, M., Ganu, S., Ramachandran, K., Kremo, H., Siracusa, R., Liu, H., & Singh, M. (2005). Overview of the ORBIT radio grid testbed for evaluation of next-generation wireless network protocols. In Wireless communications and networking conference (WCNC), vol. 3, pp. 1664–1669.

  46. Sadeghi, B., Kanodia, V., Sabharwal, A., Knightly, E. (2005). OAR: An opportunistic auto-rate media access protocol for ad hoc networks. Kluwer Academic Wireless Networks, 11(1–2), 39–53.

    Article  Google Scholar 

  47. SIGNET: dei80211mr: A new 802.11 implementation for NS-2.http://www.dei.unipd.it/wdyn/?IDsezione=50.0. Last access Dec 18, 2008

  48. Song, Y., Zhu, X., Fang, Y., & Zhang, H. (2010). Threshold optimization for rate adaptation algorithms in IEEE 802.11 WLANs. IEEE Transactions on Wireless Communications, 9(1), 318–327.

    Article  Google Scholar 

  49. Tay, Y. C., & Chua, K. C. (2001). A capacity analysis for the IEEE 802.11 MAC protocol. Wireless Networks 7(2), 159–171.

    Article  MATH  Google Scholar 

  50. Vutukuru, M., Balakrishnan, H., & Jamieson, K. (2009). Cross-layer wireless bit rate adaptation. ACM SIGCOMM Computer Communication Review, 39(4), 3–14.

    Article  Google Scholar 

  51. Wang, S. C., & Helmy, A. (2008). BEWARE: background traffic-aware rate adaptation for IEEE 802.11. In International Symposium on a world of wireless, mobile and multimedia networks (WoWMoM), pp. 1–12.

  52. Wong, S. H. Y., Yang, H., Lu, S., & Bharghavan, V. (2006). Robust rate adaptation for 802.11 wireless networks. In ACM International conference on mobile computing and networking (MobiCom), pp. 146–157.

  53. Xia, Q., & Hamdi, M. (2008). Smart sender: A practical rate adaptation algorithm for multirate IEEE 802.11 WLANs. IEEE Transactions on Wireless Communications, 7(5), 1764–1775.

    Article  Google Scholar 

  54. Zhang, J., Tan, K., Zhao, J., Wu, H., & Zhang, Y. (2008). A practical SNR-guided rate adaptation. In IEEE International conference on computer communications (INFOCOM), pp. 2083–2091.

Download references

Acknowledgments

This work was supported by CAPES, CNPq, FAPERJ, FINEP and RNP. We thank WINLAB/Rutgers University for granting access to the ORBIT testbed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kleber V. Cardoso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardoso, K.V., de Rezende, J.F. Increasing throughput in dense 802.11 networks by automatic rate adaptation improvement. Wireless Netw 18, 95–112 (2012). https://doi.org/10.1007/s11276-011-0389-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-011-0389-9

Keywords

Navigation