Skip to main content
Log in

Intelligent wireless mesh path selection algorithm using fuzzy decision making

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless mesh networks (WMNs) are expected to be widely deployed due to their ability to provide ubiquity, convenience, cost-efficiency, and simplicity for both service providers and end-users. Recently, the IEEE 802.11s standard introduces the hybrid wireless mesh protocol (HWMP) which is inspired by a combination of on-demand and tree-based pro-active routing algorithms. In this paper, we argue that the proposed unimetric path selection algorithm in the standard is not reliable. We introduce and examine a novel multimetric wireless mesh path selection algorithm using fuzzy decision making under realistic wireless channel conditions. The proposed path selection algorithm is designed to improve the performance of both re-active and pro-active routing protocols of HWMP for not only single-channel but also multi-channel WMNs. The reported results show the superior performance of the proposed path selection algorithm in terms of delay and packet delivery ratio without increasing overhead significantly. Although some fuzzy-based routing algorithms have been defined in literature recently, to the best of our knowledge, this paper is the first one to introduce and examine the use of fuzzy logic in the path selection of single- and multi-channel wireless local area network-based WMNs under realistic wireless channel conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Schiller, J. (2003). Mobile communications, 2nd ed. Boston: Addison-Wesley.

    Google Scholar 

  2. Akyildiz, I., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487.

    Article  MATH  Google Scholar 

  3. He, T., Chan, S.-H., & Wong, C.-F. (2008). HomeMesh: A low-cost indoor wireless mesh for home networking. IEEE Communications Magazine, 46(12), 79–85.

    Article  Google Scholar 

  4. Kuran, M. S., & Tugcu, T. (2007). A survey on emerging broadband wireless access technologies. Computer Networks, 51(11), 3013–3046.

    Article  Google Scholar 

  5. Hiertz, G., Zang, Y., Max, S., Junge, T., Weiss, E., & Wolz, B. (2008). IEEE 802.11s: WLAN mesh standardization and high performance extensions. IEEE Network, 22(3), 12–19.

    Article  Google Scholar 

  6. Bahr, M. (2009). IEEE P802.11 Wireless LANs: Resolution to CID 1736—HWMP overview. IEEE P802.11—TASK GROUP S.

  7. Faccin, S., Wijting, C., Kenckt, J., & Damle, A. (2006). Mesh WLAN networks: Concept and system design. IEEE Wireless Communications, 13(2), 10–17.

    Article  Google Scholar 

  8. Camp, J., & Knightly, E. (2008). The IEEE 802.11s extended service set mesh networking standard. IEEE Communications Magazine, 46(8), 120–126.

    Article  Google Scholar 

  9. Ishmael, J., Bury, S., Pezaros, D., & Race, N. (2008). Deploying rural community wireless mesh networks. IEEE Internet Computing, 12(4), 22–29.

    Article  Google Scholar 

  10. Garroppo, R., Giordano, S., Iacono, D., & Tavanti, L. (2008). Notes on implementing a IEEE 802.11s mesh point. In Proceedings of the EuroNGI Workshop (pp. 60–72). Barcelona, Spain.

  11. Haas, Z. J., Pearlman, M. R., & Samar, P. (May 2011). The zone routing protocol (ZRP) for ad hoc networks, [Online]. Available http://www3.ietf.org/proceedings/98aug/I-D/draft-ietf-manet-zone-zrp-04.txt.

  12. Bahr, M. (2007). Update on the hybrid wireless mesh protocol of IEEE 802.11s. In Proceedings of the IEEE International conference on Mobile Adhoc and Sensor Systems (MASS) (pp. 1–6), Pisa, Italy.

  13. Wang, X., & Lim, A. (2008). IEEE 802.11s wireless mesh networks: Framework and challenges. Ad Hoc Networks, 6(6), 970–984.

    Article  Google Scholar 

  14. Perkins, C. E., & Belding-Royer, E. M. (1999). Ad-hoc on-demand distance vector routing. In Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications (WMCSA) (pp. 90–100). New Orleans, LA, USA.

  15. Perkins, C. E., Belding-Royer, E. M., & Das, S. (2003). Ad hoc on demand distance vector (AODV) routing. IETF RFC 3561.

  16. Perkins, C. E., & Bhagwat, P. (1994). Highly dynamic destination sequenced distance vector routing (DSDV) for mobile computers. In Proceedings of the SIGCOMM (pp. 234–244). London, UK.

  17. Guezouri, M., & Ouamri, A. (2007). Optimizing routes quality and scattering in the AODV routing protocol. Journal of Computer Science & Technology, 7(3), 209–212.

    Google Scholar 

  18. Xia, L., Liu, Z., Chang, Y., & Sun, P. (2009). An improved AODV routing protocol based on the congestion control and routing repair mechanism. In Proceedings of the International Conference on Communications and Mobile Computing (CMC) (pp. 259–262), Kunming, Yunnan, China.

  19. Espes, D., & Mammeri, Z. (2007). Improvement of AODV routing in dense networks. In Proceedings of the IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM) (pp. 1–4). Helsinki, Finland.

  20. Qiang, Z., & Hongbo, Z. (2008). An optimized AODV protocol in mobile Ad Hoc network. In Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM) (pp. 1–4), Dalian, China.

  21. Bahr, M. (2006). Proposed routing for IEEE 802.11s WLAN mesh networks. In Proceedings of the International Workshop on Wireless Internet (WICON) (pp. 1–10), Boston, MA, USA.

  22. Draves, R., Padhye, J., & Zill, B. (2004). Routing in multi-radio, multi-hop wireless mesh networks. In Proceedings of the ACM MobiCom (pp. 114–128), Philadelphia, PA, USA.

  23. Yang, Y., Wang, J., & Kravets, R. (2005). Designing routing metrics for mesh networks. In Proceedings of the IEEE Workshop on Wireless Mesh Networks (WiMesh) (pp. 1–9). Santa Clara, CA, USA.

  24. Wong, Y. F., & Wong, W. C. (2003). A fuzzy-decision-based routing protocol for mobile Ad hoc networks. In Proceedings of the IEEE International Conference on Networks (ICON) (pp. 317–322). Singapore.

  25. Rea, S., & Pesch, D. (2004). Multi-metric routing decisions for Ad hoc networks using fuzzy logic. In Proceedings of the International Symposium on Wireless Communication Systems (pp. 403–407). Mauritius.

  26. Liu, H., Li, J., Zhang, Y.-Q., & Pan, Y. (2005). An adaptive genetic fuzzy multi-path routing protocol for wireless ad-hoc networks. In Proceedings of the International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing and International Workshop on Self-Assembling Wireless Networks (SNPD/SAWN) (pp. 468–475). Towson, MD, USA.

  27. El-Hajj, W., Al-Fuqaha, A., Guizani, M., & Chen, H.-H. (2009). On efficient network planning and routing in large-scale MANETs. IEEE Transactions on Vehicular Technology, 58(7), 3796–3801.

    Article  Google Scholar 

  28. Wang, L., Chen, S., & Li, X. (2006). A multiple-objective fuzzy decision making based information-aware routing protocol for wireless sensor networks. In Proceedings of the International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM) (pp. 1–4). Piscataway, NJ, USA.

  29. Pirzada, A. A., Wishart, R., & Portmann, M. (2007). Multi-linked AODV routing protocol for wireless mesh networks. In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM) (pp. 4925–4930). Washington, DC, USA.

  30. Kaabi, F., Ghannay, S., & Filali, F. (2010). Channel allocation and routing in wireless mesh networks: A survey and qualitative comparison between schemes. International Journal of Wireless & Mobile Networks (IJWMN), 2(1), 132–150.

    Google Scholar 

  31. Ni, Q. (2005). Performance analysis and enhancements for IEEE 802.11e wireless networks. IEEE Network, 19(4), 21–27.

    Article  Google Scholar 

  32. Cheng, H. T., & Zhuang, W. (2009). QoS-driven MAC-layer resource allocation for wireless mesh networks with non-altruistic node cooperation and service differentiation. IEEE Transactions on Wireless Communications, 8(12), 6089–6103.

    Article  Google Scholar 

  33. Zadeh, L. A. (1965). Fuzzy sets. Information Control, 8(3), 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  34. Mamdani, E. H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. In Proceedings of the IEEE, 121(12), 1585–1588.

    Article  Google Scholar 

  35. Siler, W., Buckley, J. J. (2005). Fuzzy expert systems and fuzzy reasoning. London: Wiley.

    Google Scholar 

  36. Bellman, R. A., & Zadeh, L. A. (1970). Decision-making in a fuzzy environment. Management Sciences, 17(4), 141–164.

    Article  MathSciNet  Google Scholar 

  37. Zimmermann, H. J. (2001). Fuzzy set theory and Its applications, (4th ed.). Dordrecht: Kluwer.

    Book  Google Scholar 

  38. Yager, R. R. (1978). Fuzzy decision making unequal objectives. Fuzzy Sets and Systems, 1, 87–95.

    Article  MATH  Google Scholar 

  39. Kaemarungsi, K. (2006). Distribution of WLAN received signal strength indication for indoor location determination. In Proceedings of the International Symposium on Wireless Pervasive Computing (ISWPC) (pp. 1–6) Phuket, Thailand.

  40. Raniwala, A., & Chiueh, T. (2005). Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. In Proceedings of the INFOCOM (pp. 2223–2234) Miami, FL, USA.

  41. Pearlman, P. S. M. R., Haas Z. J., & Tabrizi, S. S. (2000). On the impact of alternate path routing for load balancing in mobile Ad hoc networks. In Proceedings of the IEEE/ACM MobiHOC (pp. 3–10) Boston, MA, USA.

  42. Zhao, J. H., Yang, X. Z., & Liu, H. W. (2005). Load-balancing strategy of multi-gateway for Ad hoc internet connectivity. In Proceedings of the International Conference on Information Technology: Coding and Computing (ITCC) (pp. 592–596) Las Vegas, NV, USA.

  43. Pirzada, A. A., Wishart, R., & Portmann, M. (2007). Congestion aware routing in hybrid wireless mesh networks. In Proceedings of the IEEE International Conference on Networks (ICON) (pp. 513–518), Hyderabad, India.

  44. Erceg, V., Hari, K. V. S., Smith, M. S., Baum, D. S., Soma, P., Greenstein, L. J., Michelson, D. G., Ghassemzadeh, S., Rustako, A. J., Roman, R. S., Sheikh, K. P., Tappenden, C., Costa, J. M., Bushue, C., Sarajedini, A., Schwartz, D. R., Branlund, Kaitz, T., & Trinkwon, D. (2003). Channel models for fixed wireless applications: IEEE 802.16 Broadband Wireless Access Working Group.

  45. Erceg, V., Greenstein, L., Tjandra, S., Parkoff, S., Gupta, A., Kulic, B., Julius, A., & Bianchi, R. (1999). An empirically based path loss model for wireless channels in suburban environments. IEEE Journal on Selected Areas in Communications, 17(7), 1205–1211.

    Article  Google Scholar 

  46. OMNeT++, May 2011. [Online]. Available: http://www.omnetpp.org.

  47. Xiao, Y. (2005). IEEE 802.11n: Enhancements for higher throughput in wireless LANs. IEEE Wireless Communications, 12(6), 82–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navid Ghazisaidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghazisaidi, N., Assi, C.M. & Maier, M. Intelligent wireless mesh path selection algorithm using fuzzy decision making. Wireless Netw 18, 129–146 (2012). https://doi.org/10.1007/s11276-011-0391-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-011-0391-2

Keywords

Navigation