Skip to main content

Advertisement

Log in

Energy efficiency and throughput performance of power and rate allocation on incremental decode-and-forward relaying

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper we investigate the combination of rate and power allocation techniques in an orthogonal cooperative scheme using infra-structured (fixed) relays, under the incremental decode-and-forward protocol. We consider realistic large scale and small scale path loss models, taking into account the antennas heights and the presence or not of line-of-sight. Results demonstrate that the throughput performance can be significantly increased in the low signal-to-noise ratio (SNR) region due to rate allocation (RA), and in the high SNR region due to power allocation (PA). In addition, we present an energy efficiency analysis which shows that RA is much more efficient than PA over the whole SNR range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Throughout this paper, we interchangeably refer to the source as S or MS. We also refer to the destination as D or BS.

  2. IDF presents the best performance among the DF and amplify-and-forward (AF) protocols [21]. In addition, optimum AF and compress-and-forward (CF) require more channel state information than IDF [20].

  3. Note that since the previous direct packet was in outage, only the retransmitted packet is considered.

  4. Note that the outage probability in (15) is lower than that of the S–D link in (8), since d < ρ and the relay antenna is at a higher height than the source antenna.

  5. This is an usual assumption made, for instance, in [1, 18, 32].

  6. Recall that the power allocated to the relay is given by P *R  = P T − P *S , since the system is subjected to a total power constraint.

References

  1. Ahmed, N., & Aazhang, B. (2007). Throughput gains using rate and power control in cooperative relay networks. IEEE Transactions on Communications, 55(4), 656–660. doi:10.1109/TCOMM.2007.894121.

    Article  Google Scholar 

  2. Alamouti, S. (1998). A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 16(8), 1451–1458. doi:10.1109/49.730453.

    Article  Google Scholar 

  3. Alves, H., Souza R. D., Brante G. G. O., & Pellenz, M. E. (2011). Performance of type-i and type-ii hybrid arq in decode and forward relaying. In: Proceedings of the IEEE vehicular technology conference (VTC’11 Spring).

  4. Biggs, M. C. (1975). Constrained minimization using recursive quadratic programming. In L. C. W. Dixon & G. P. Szergo (Eds.), Toward global optimization (pp. 341–349). North-Holland.

  5. Biglieri, E., Caire, G., & Taricco, G. (2001). Limiting performance of block-fading channels with multiple antennas. IEEE Transactions on Information Theory, 47(4), 1273–1289. doi:10.1109/18.923715.

    Article  MathSciNet  MATH  Google Scholar 

  6. Boyd, S., & Vandenberghe, L. (2004). Convex optimization (1st ed.). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  7. Chen, G., Hanson, S., Blaauw, D., & Sylvester, D. (2010). Circuit design advances for wireless sensing applications. Proceedings of the IEEE, 98(11), 1808–1827. doi:10.1109/JPROC.2010.2053333.

    Article  Google Scholar 

  8. Cui, S., Goldsmith, A., & Bahai, A. (2003). Energy-constrained modulation optimization for coded systems. In IEEE global telecommunications conference (vol. 1, pp. 372–376). doi:10.1109/GLOCOM.2003.1258264.

  9. Cui, S., Goldsmith, A., Bahai, A. (2005). Energy-constrained modulation optimization. IEEE Transactions on Wireless Communications, 4(5), 2349–2360. doi:10.1109/TWC.2005.853882.

    Article  Google Scholar 

  10. de Oliveira Brante, G. G., Pellenz, M. E., & Souza, R. D. (2011). Spectrally efficient incremental relaying for coverage expansion in cellular networks with heterogeneous path loss conditions. Wireless Personal Communications. doi:10.1007/s11277-011-0221-y.

  11. Foschini, G. J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59. doi:10.1002/bltj.2015.

    Article  Google Scholar 

  12. Freitas, W. D. C., Cavalcanti, F. R. P., & Lopes, R. R. (2005). Hybrid transceiver schemes for spatial multiplexing and diversity in mimo systems. Journal of Communication and Information Systems, 20(3), 141–154.

    Google Scholar 

  13. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  14. Han, S. P. (1977). A globally convergent method for nonlinear programming. Journal of Optimization Theory and Applications, 22, 297–309.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hong, Y. W., Huang, W. J., Chiu, F. H., & Kuo, C. C. J. (2007). Cooperative communications resoure-constrained wireless networks: Exploiting spatial diversity gains in multiuser wireless networks. IEEE Signal Process Mag (pp. 47–57).

  16. IEEE (2007). Multi-hop relay system evaluation methodology (Channel model and performance metric). In IEEE 802.16’s relay task group. URL http://www.ieee802.org/16/relay/docs/80216j-06_013r3.pdf.

  17. IEEE (2009). IEEE standard for local and metropolitan area networks–Part 16: Air interface for broadband wireless access systems–amendment 1: Multihop relay specification. In IEEE Std 802.16jTM-2009.

  18. Kadloor, S., & Adve, R. (2010). Relay selection and power allocation in cooperative cellular networks. IEEE Transactions on Wireless Communications, 9(5), 1676–1685. doi:10.1109/TWC.2010.05.090307.

    Article  Google Scholar 

  19. Knopp, R., & Humblet, P. (2000). On coding for block fading channels. IEEE Transactions on Information Theory, 46(1), 189–205. doi:10.1109/18.817517.

    Article  MATH  Google Scholar 

  20. Kramer, G., Gastpar, M., & Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 51(9), 3037–3063. doi:10.1109/TIT.2005.853304.

    Article  MathSciNet  Google Scholar 

  21. Laneman, J., Tse, D., & Wornell, G. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080. doi:10.1109/TIT.2004.838089.

    Article  MathSciNet  Google Scholar 

  22. Luo, J., Blum, R., Cimini, L., Greenstein, L., & Haimovich, A. (2007). Decode-and-forward cooperative diversity with power allocation in wireless networks. IEEE Transactions on Wireless Communications, 6(3), 793–799. doi:10.1109/TWC.2007.05272.

    Article  Google Scholar 

  23. Luo, Z. Q., & Yu, W. (2006). An introduction to convex optimization for communications and signal processing. IEEE Journal on Selected Areas in Communications, 24(8), 1426–1438. doi:10.1109/JSAC.2006.879347.

    Article  Google Scholar 

  24. Ma, K., Liu, Z., & Guan, X. (2010). Joint relay selection and power allocation for cooperative cellular networks. Wireless Personal Communications. doi:10.1007/s11277-010-0200-8.

  25. Malkamaki, E., & Leib, H. (1999). Coded diversity on block-fading channels. IEEE Transactions on Information Theory, 45(2), 771–781. doi:10.1109/18.749028.

    Article  MathSciNet  Google Scholar 

  26. Nosratinia, A., Hunter, T., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80. doi:10.1109/MCOM.2004.1341264.

    Article  Google Scholar 

  27. Peters, S., & Heath, R. (2009). The future of WiMAX: Multihop relaying with IEEE 802.16j. IEEE Communications Magazine, 47(1), 104–111. doi:10.1109/MCOM.2009.4752686.

    Article  Google Scholar 

  28. Powell, M. J. D. (1978). A fast algorithm for nonlinearly constrained optimization calculations (Lecture Notes in Mathematics, Vol. 630). Berlin: Springer.

  29. Sadek, A. K., Han, Z., & Liu, K. J. R. (2010). Distributed relay-assignment protocols for coverage expansion in cooperative wireless networks. IEEE Transactions on Mobile Computing, 9(4), 505–515. doi:10.1109/TMC.2009.132.

    Article  Google Scholar 

  30. Savazzi, S., & Spagnolini, U. (2007). Cooperative space-time coded transmissions in nakagami-m fading channels. In IEEE global telecommunications conference (GLOBECOM), (pp. 4334–4338). doi:10.1109/GLOCOM.2007.824.

  31. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity-part I: System description. IEEE Transactions on Communications, 51(11), 1927–1938. doi:10.1109/TCOMM.2003.818096.

    Article  Google Scholar 

  32. Shi, Y., Mallik, R. K., & Letaief, K. B. (2010). Power control for relay-assisted wireless systems with general relaying. In IEEE international conference on communications (ICC), (pp. 1–5). doi:10.1109/ICC.2010.5502410.

  33. Vardhe, K., Reynolds, D., & Woerner, B. (2010). Joint power allocation and relay selection for multiuser cooperative communication. IEEE Transactions on Wireless Communications, 9(4), 1255–1260. doi:10.1109/TWC.2010.04.080175.

    Article  Google Scholar 

  34. Wang, H., Xiong, C., & Iversen, V. B. (2009). Uplink capacity of multi-class IEEE 802.16j relay networks with adaptive modulation and coding. In: IEEE International conference on communications (ICC), (pp. 1–6). doi:10.1109/ICC.2009.5199552.

  35. Wolniansky, P., Foschini, G., Golden, G., Valenzuela, R. V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel. In 1998 URSI international symposium on signals, systems, and electronics. Conference proceedings (Cat. No.98EX167), (pp. 295–300). doi:10.1109/ISSSE.1998.738086.

  36. Xu, H., Huang, L., Wang, G., Xu, T., & Liu, G. (2010). Joint relay assignment and power allocation for cooperative communications. Wireless Networks, 16(8), 2209–2219. doi:10.1007/s11276-010-0254-2.

    Article  Google Scholar 

  37. Yanikomeroglu, H., Falconer, D., & Periyalwar, S. (2004). Range extension without capacity penalty in cellular networks with digital fixed relays. In IEEE global telecommunications conference (GLOBECOM), (pp. 3053–3057). doi:10.1109/GLOCOM.2004.1378913.

  38. Yilmaz, E., Knopp, R., Gesbert, D. (2009). On the gains of fixed relays in cellular networks with intercell interference. In IEEE 10th workshop on signal processing advances in wireless communications, (pp. 603–607). doi:10.1109/SPAWC.2009.5161856.

Download references

Acknowledgments

This work was partially supported by CNPq and CAPES (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Demo Souza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alves, H., Brante, G., Souza, R.D. et al. Energy efficiency and throughput performance of power and rate allocation on incremental decode-and-forward relaying. Wireless Netw 18, 495–505 (2012). https://doi.org/10.1007/s11276-012-0414-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-012-0414-7

Keywords

Navigation