Skip to main content

Advertisement

Log in

On energy efficiency of geographic opportunistic routing in lossy multihop wireless networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Geographic opportunistic routing (GOR) is an emerging technique that can improve energy efficiency in lossy multihop wireless networks. GOR makes local routing decision by using nodes’ location information, and exploits the broadcast nature and spatial diversity of the wireless medium to improve the packet forwarding reliability. In this paper, our goal is to fully understand the principles and tradeoffs in GOR, thus provide insightful analysis and guidance to the design of more efficient routing protocols in multihop wireless networks. We propose a local metric, one-hop energy efficiency (OEE), to balance the packet advancement, reliability and energy consumption in GOR. We identify and prove important properties about GOR on selecting and prioritizing the forwarding candidates in order to maximize the expected packet advancement. Leveraging the proved properties, we then propose two localized candidate selection algorithms with O(N 3) running time to determine the forwarding candidate set that maximizes OEE, where N is the number of available next-hop neighbors. Through extensive simulations, we show that GOR applying OEE achieves better energy efficiency than the existing geographic routing and blind opportunistic routing schemes under different node densities and packet sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In this paper, p T  = 0.1.

  2. Please refer to [3] for a complete description of the model.

  3. For simplicity, we denote node using its subscript in this proof.

References

  1. Couto, D., Aguayo, D., Bicket, J., & Morris, R. (2003, September). A high-throughput path metic for multi-hop wireless routing. In ACM MobiCom’03, San Diego, California.

  2. Zhao, J., & Govindan, R. (2003, November). Understanding packet delivery performance in dense wireless sensor networks. In ACM Sensys’03, LA, CA.

  3. Zuniga, M., & Krishnamachari, B. (2004). Analyzing the transitional region in low power wireless links. In IEEE Secon’04.

  4. Zorzi, M., & Rao, R. R. (2003). Geographic random forwarding (geraf) for ad hoc and sensor networks: energy and latency performance. IEEE Transactions on Mobile Computing, 2(4), 349–365.

    Google Scholar 

  5. Shah, R. C., Bonivento, A., Petrovic, D., Lin, E., van Greunen, J., & Rabaey, J. (2004, November). Joint optimization of a protocol stack for sensor networks. In IEEE Milcom.

  6. Biswas, S., & Morris, R. (2005, August). Exor: Opportunistic multi-hop routing for wireless networks. In SIGCOMM’05, Philadelphia, Pennsylvania.

  7. Fussler, H., Widmer, J., Kasemann, M., Mauve, M., & Hartenstein, H. (2003). Contention-based forwarding for mobile ad-hoc networks. Elsevier’s Ad Hoc Networks, 1(4), 351–369.

    Article  Google Scholar 

  8. Zeng, K., Yang, Z., & Lou, W. (2009). Location-aided opportunistic forwarding in multirate and multihop wireless networks. IEEE Transactions on Vehicular Technology, 58(6), 3032–3040.

    Article  Google Scholar 

  9. Dubois-Ferriere, H., Grossglauser, M., & Vetterli, M. (2007). Least-cost opportunistic routing, School of Computer and Communication Sciences, EPFL, Technical Report LCAV-REPORT-2007-001.

  10. Raghunathan, V., Schurgers, C., Park, S., & Srivastava, M. (2002). Energy-aware wireless microsensor networks. Signal Processing Magazine, IEEE, 19(2), 40–50.

    Article  Google Scholar 

  11. Finn, G. G. (1987, March). Routing and addressing problems in large metropolitan-scale internetworks, USC/ISI, Technical Report ISI/RR-87-180.

  12. Takagi, H., & Kleinrock, L. (1984). Optimal transmission ranges for randomly distributed packet radio terminals. IEEE Transactions on Communications, 32(3), 246–257.

    Article  Google Scholar 

  13. Ko, Y., & Vaidya, N. H. (1998, October). Location aided routing (lar) in mobile ad hoc networks. In IEEE/ACM MobiCom.

  14. Bose, P., Morin, P., Stojmenovic, I., & Urrutia, J. (1999, August). Routing with guaranteed delivery in ad hoc wireless networks. In 3rd International workshop on discrete algorithms and methods for mobile computing and communications, Seattle, WA.

  15. Karp, B., & Kung, H. (2000, August). Gpsr: Greedy perimeter stateless routing for wireless networks. In ACM MOBICOM, Boston.

  16. Kuhn, F., Wattenhofer, R., Zhang, Y., & Zollinger, A. (2003, July). Geometric ad-hoc routing: Of theory and practice. In 22nd ACM Symposium on the principles of distributed computing (PODC), Boston.

  17. Seada, K., Zuniga, M., Helmy, A., & Krishnamachari, B. (2004, November). Energy-efficient forwarding strategies for geographic routing in wireless sensor networks. In ACM Sensys’04, Baltimore, MD.

  18. Lee, S., Bhattacharjee, B., & Banerjee, S. (2005). Efficient geographic routing in multihop wireless networks. In MobiHoc.

  19. Zhang, H., & Shen, H. (2010). Energy-efficient beaconless geographic routing in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 21, 881–896.

    Article  MathSciNet  Google Scholar 

  20. Bulusu, N., Heidemann, J., & Estrin, D. (2000). Gps-less low cost outdoor localization for very small devices. IEEE Personal Communications Magazine, 7(5), 28–34.

    Article  Google Scholar 

  21. Savvides, A., Han, C., & Strivastava, M. B. (2001, July). Dynamic finegrained localization in ad-hoc networks of sensors. In IEEE/ACM MobiCom.

  22. Zorzi, M., & Armaroli, A. (2003, October). Advancement optimization in multihop wireless networks. In Proc. of VTC.

  23. Lin, E., Wolisz, A., & Rabaey, J. (2004, June). Power efficient rendezvous schemes for dense wireless sensor networks. In IEEE ICC.

  24. El-Hoiydi, A., & Decotignie, J.-D. (2004). Wisemac: An ultra low power mac protocol for the downlink of infrastructure wireless sensor networks. ISCC, 2, 244–251.

  25. Yang, Z., Zeng, K., & Lou, W. (2009, June). Fsa: A fast coordination scheme for opportunistic routing. In Communications, 2009. ICC ’09. IEEE International Conference on, pp. 1–5.

  26. Shah, R. C., Wietholter, S., Wolisz, A., & Rabaey, J. M. (2005, March). When does opportunistic routing make sense? In IEEE PerSens.

  27. Shah, R. C., Wietholter, S., Wolisz, A., & Rabaey, J. M. (2005). Modeling and analysis of opportunistic routing in low traffic scenarios. In WiOpt’05.

  28. Keshavarzin, A., Uysal-Biyikoglu, E., Herrmann, F., & Manjeshwar, A. (2004, March). Energy-efficient link assessment in wireless sensor networks. In IEEE Infocom.

  29. Shnayder, V., Hempstead, M., Chen, B.-r., Allen, G. W., & Welsh, M. (2004). Simulating the power consumption of large-scale sensor network applications. In Proceedings of the 2nd international conference on Embedded networked sensor systems, ser. SenSys ’04 (pp. 188–200). New York, NY, USA: ACM. [Online] Available: http://doi.acm.org/10.1145/1031495.1031518.

  30. Ansari, J., Pankin, D., & Mähönen, P. (2009). Radio-triggered wake-ups with addressing capabilities for extremely low power sensor network applications. IJWIN, 16(3), 118–130.

    Google Scholar 

  31. Zeng, K., Lou, W., Yang, J., & Brown, D. (2007, August). On geographic collaborative forwarding in wireless ad hoc and sensor networks. In International conference on wireless algorithms, systems and applications (WASA), 2007, pp. 11–18.

  32. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to Algorithms (2nd ed.). Cambridge, Mass: MIT Press.

  33. Mica2 mote datasheet, http://www.xbow.co.

Download references

Acknowledgments

This work was supported in part by the US National Science Foundation under grants CNS-0746977, CNS-0716306, and CNS-0831628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjing Lou.

Appendix 1

Appendix 1

1.1 Proof of Lemma 5.3

Proof

We begin by proving the following useful result. Let \(\mathcal{A}\) be an ordered node set \(\langle a_1,a_2, \ldots ,a_M\rangle\) Footnote 3 with M (\(1\leq M<\infty\)) nodes, in which the nodes are ordered as \(d_{{_{{a_{1} }} }} > d_{{a_{2} }} > \cdots > d_{{a_{M} }}\). Let \(\mathcal{B}\), \(\langle b_1,b_2,\ldots,b_N\rangle\) with N (0 ≤ N < M) nodes, be a subset of \(\mathcal{A}\) such that \(d_{{_{{b_{1} }} }} > d_{{b_{2} }} > \cdots > d_{{b_{N} }}\) and b N  = a M . For any node \(q\notin\mathcal{A}\) with \(d_{q} \le d_{{a_{M} }}\), we have the following inequality

$$ \begin{aligned} \Updelta A&:={\rm EPA}(\langle{\mathcal A},q\rangle)-{\rm EPA}(\langle q,{\mathcal A}\rangle)\\ \geq\Updelta B&:={\rm EPA}(\langle{\mathcal B},q\rangle)-{\rm EPA}(\langle q,{\mathcal B}\rangle) \end{aligned} $$
(32)

The equality holds only when \(d_{{a_{1} }} = d_{{a_{2} }} = \cdots = d_{{a_{M} }} = d_{q}\).

As \(\mathcal{B}\subset \mathcal{A}\), we can represent \(\mathcal{A}\) as

$$ {\mathcal A} = \langle{\mathcal A}_{1},b_{1},{\mathcal A}_{2},b_{2},\ldots,{\mathcal A}_{N},b_{N}\rangle $$
(33)

where \(\mathcal{A}_{i}\) (1 ≤ i ≤ N) is an ordered node set and can be ∅. Assume \(|\mathcal{A}_{i}|=L_{i}\). Denote the kth element in \(\mathcal{A}_{i}\) as \(\mathcal{A}_{{i_{k} }}\). According to the definition of EPA of an ordered node set in Eq. (3), we have

$$ {\rm EPA}({\mathcal A}_{i}) = \sum_{k=1}^{L_i}d_{A_{i_{k}}}p_{A_{i_{k}}}\cdot \prod_{n=0}^{k-1}(1-p_{A_{i_{n}}}) $$
(34)

where \(p_{{A_{{i_{0} }} }} : = 0 \).

For convenience, we handle the ordered set \(\mathcal{A}_{i}\) as a new node by giving the following definition.

$$ p_{{\mathcal A}_{i}} = 1 - \prod_{n=0}^{L_i}(1-p_{A_{i_{n}}}) \quad {\rm and}\quad \,d_{{\mathcal A}_{i}} = \frac{{\rm EPA}({\mathcal A}_{i})}{p_{{\mathcal A}_{i}}} $$
(35)

If \(\mathcal{A}_{i}=\emptyset\), we can choose a positive real number for \({d_{\mathcal{A}_{i}}}\), s.t. \({d_{b_{i-1}}\geq d_{\mathcal{A}_{i}}\geq d_{b_{i}}}\), and \({p_{\mathcal{A}_{i}}=0}\). \(d_{{b_{0} }}\) is chosen as a positive real number that makes the inequality \({d_{b_{0}}\geq d_{\mathcal{A}_{1}} \geq d_{b_{1}}}\) hold.

From Eq. (34) and (35), we can easily derive that

$$d_{A_{i_{1}}} \geq d_{{\mathcal A}_{i}} \geq d_{A_{i_{L_i}}},\;{\hbox{then}}\; d_{b_{i-1}}\geq d_{{\mathcal A}_{i}}\geq d_{b_{i}} \forall 1\leq i\leq N $$
(36)

Now EPA of \(\mathcal{A}\) is represented as

$$ {\rm EPA}({\mathcal A}) = \sum_{k=1}^{N}[d_{{\mathcal A}_{k}}p_{{\mathcal A}_{k}} + d_{b_{k}}p_{b_{k}}(1-p_{{\mathcal A}_{k}})] \cdot\prod_{n=0}^{k-1}(1-p_{{\mathcal A}_{n}})(1-p_{b_{n}}) $$
(37)

where \({p_{\mathcal{A}_{0}}:=0}\) and \(p_{{b_{0} }} : = 0\).

Define \({d_{\mathcal{A}_{N+1}}:=d_q}\) and \({p_{\mathcal{A}_{N+1}}:=p_q}\), then

$$ \Updelta A = \sum_{k=1}^{N}[p_{{\mathcal A}_{k}}(d_{{\mathcal A}_{k}}-d_{{\mathcal A}_{N+1}}) + (1-p_{{\mathcal A}_{k}})p_{b_{k}}(d_{b_{k}}-d_{{\mathcal A}_{N+1}})]\\ \cdot p_{{\mathcal A}_{N+1}}\prod_{n=0}^{k-1}(1-p_{{\mathcal A}_{n}})(1-p_{b_{n}}) $$
(38)
$$ \Updelta B =\sum_{k=1}^{N}p_{b_{k}}p_{{\mathcal A}_{N+1}}(d_{b_{k}}-d_{{\mathcal A}_{N+1}})\prod_{n=0}^{k-1}(1-p_{b_{n}}) $$
(39)

So

$$ \begin{aligned} \Updelta A - \Updelta B &= \sum\limits_{{k = 1}}^{N} {[(d_{{\mathcal{A}_{k} }} - d_{{b_{k} }} ) + (1 - p_{{b_{k} }} )(d_{{b_{k} }} - d_{{\mathcal{A}_{{k + 1}} }} )]} \\ \quad \cdot \left\{ {p_{{\mathcal{A}_{{N + 1}} }} \left[ {1 - \prod\limits_{{n = 0}}^{k} {(1 - p_{{\mathcal{A}_{n} }} )} } \right]\left[ {\prod\limits_{{n = 0}}^{{k - 1}} {(1 - p_{{b_{n} }} )} } \right]} \right\} \ge 0 \\ \end{aligned} $$
(40)

As \({\mathcal{A}\supset\mathcal{B}, \exists p_{\mathcal{A}_{n}}\neq 0 (1\leq n\leq N)}\). We also have \({d_{\mathcal{A}_{k}}\geq d_{b_{k}}}\) and \({d_{b_{k}}\geq d_{\mathcal{A}_{k+1}}}\). So inequality (40) holds, that is, inequality (32) holds.

Now we are ready to prove the containing property of \(\mathcal{F}^{*}_r\)’s. Recall that for arbitrary finite node number, \(N=|\mathcal{C}|\geq 1\), we want to prove \(\forall \mathcal{F}^{*}_{r-1}, \exists\) an \(\mathcal{F}^{*}_{r}\), s.t. \(\mathcal{F}^{*}_{r-1}\subset\mathcal{F}^{*}_{r}, \forall 1\leq r\leq N\). For each r, denote one feasible \(\mathcal{F}^{*}_{r}=\langle r_{1},r_{2},\ldots,r_{r}\rangle\) and \(d_{{r_{1} }} \ge d_{{r_{2} }} \ge \cdots \ge d_{{r_{r} }}\). We prove this Lemma by induction.

First, for arbitrary N, when r = 1, as \(\mathcal{F}^{*}_{0}=\emptyset\), and \(\mathcal{F}^{*}_{1}\neq\emptyset\), it is obvious that the containing property holds.

Second, when r = 2, implicating N ≥ 2, we want to prove \(\forall \mathcal{F}^{*}_{1}, \exists \mathcal{F}^{*}_{2}\), s.t. \(\mathcal{F}^{*}_{1}\subset\mathcal{F}^{*}_{2}\). Assume one feasible \(\mathcal{F}^{*}_{1}=\langle 1_{1}\rangle\). We know node 11 achieves the maximum EPA among the N nodes. If we assume for any feasible \(\mathcal{F}^{*}_{2}\), \(\mathcal{F}^{*}_{1}\nsubseteq\mathcal{F}^{*}_{2}\), that is \(1_{1}\notin\mathcal{F}^{*}_{2}\), then we can always replace node 22 as 11 to achieve at least an equal or larger EPA than EPA(\(\mathcal{F}^{*}_{2}\)). Then the new node set containing node 11 should be one feasible node set achieving maximum EPA by selecting 2 nodes from the N nodes, thus the assumption is wrong, then \(\exists \mathcal{F}^{*}_{2}\), s.t. \(\mathcal{F}^{*}_{1}\subset\mathcal{F}^{*}_{2}\). That is, the containing property holds when r = 2.

Then, we assume \(\forall \mathcal{F}^{*}_{m-1}, \exists\) an \(\mathcal{F}^{*}_{m}\), s.t. \(\mathcal{F}^{*}_{m-1}\subset\mathcal{F}^{*}_{m}\), when r = m (m ≥ 2), and we want to prove \(\forall \mathcal{F}^{*}_{m}, \exists\) an \(\mathcal{F}^{*}_{m+1}\), s.t. \(\mathcal{F}^{*}_{m}\subset\mathcal{F}^{*}_{m+1}\), when r = m + 1, implicating N ≥ m + 1.

We will prove under the following two cases, the containing property holds.

Case I: \((m+1)_{1}=m_{i}, i\in \{2, 3, \ldots , m\}\).

Let node (m + 1) j (2 ≤ j ≤ m + 1) be the first node in \(\mathcal{F}^{*}_{m+1}\) but not in \(\mathcal{F}^{*}_{m}\). We can always find such a node because \(\langle (m+1)_{2},\ldots,(m+1)_{m+1}\rangle\) contains more nodes than \(\langle m_{i},\ldots,m_{m}\rangle\). We know that EPA(\(\mathcal{F}^{*}_{m}\)) is the largest EPA achieved by selecting m nodes, then

$$ {\rm EPA}({\mathcal F}^{*}_{m}) \geq {\rm EPA}({\mathcal F}^{*}_{m+1} \setminus \{(m+1)_{j}\}) $$
(41)

where \(\mathcal{F}^{*}_{m+1}\setminus\{(m+1)_{j}\}\) is the ordered subset obtained by excluding (m + 1) j from \(\mathcal{F}^{*}_{m+1}\).

From the definition of EPA in Eq. (3), we have

$$ \begin{aligned} &{\rm EPA}(\langle (m+1)_{j},{\mathcal F}^{*}_{m}\rangle)\\ &\geq {\rm EPA}(\langle (m+1)_{j},{\mathcal F}^{*}_{m+1} \setminus \{(m+1)_{j}\}\rangle) \end{aligned} $$
(42)

Assume (m + 1) j−1 = m l (i ≤ l ≤ m), we have

$$ \begin{aligned} &\Updelta 1:={\rm EPA}(\langle m_{1},\ldots,m_{l},(m+1)_{j},m_{l+1},\ldots,m_m\rangle)\\ &\quad -{\rm EPA}(\langle (m+1)_{j},{\mathcal F}^{*}_{m}\rangle)\\ &={\rm EPA}(\langle m_{1},\ldots,m_{l},(m+1)_{j}\rangle)\\ &\quad -{\rm EPA}(\langle (m+1)_{j},m_{1},\ldots,m_{l}\rangle) \end{aligned} $$
(43)
$$ \begin{aligned} \Updelta 2:={\rm EPA}({\mathcal F}^{*}_{m+1})\\ -{\rm EPA}(\langle (m+1)_{j},{\mathcal F}^{*}_{m+1}\setminus \{(m+1)_{j}\}\rangle)\\ ={\rm EPA}(\langle(m+1)_{1},\ldots,(m+1)_{j-1},(m+1)_{j}\rangle)\\ -{\rm EPA}(\langle (m+1)_{j},(m+1)_{1},\ldots,(m+1)_{j-1}\rangle) \end{aligned} $$
(44)

According to the definition of (m + 1) j and the assumption that (m + 1)1 = m i , we have \(\langle (m+1)_{1},\ldots,(m+1)_{j-1}\rangle\subset\langle m_{1},\ldots,m_{l}\rangle\). Then according to inequality (32), we have \(\Updelta 1 \geq\Updelta 2\), and combining with inequality (42), we get

$$ {\rm EPA}(\langle m_{1},\ldots,m_{l},(m+1)_{j},m_{l+1},\ldots,m_m\rangle)\geq{\rm EPA}({\mathcal F}^{*}_{m+1}) $$
(45)

According to the definition of \(\mathcal{F}^{*}_{m+1}\), we have

$$ {\rm EPA}(\langle m_{1},\ldots,m_{l},(m+1)_{j},m_{l+1},\ldots,m_m\rangle)\leq{\rm EPA}({\mathcal F}^{*}_{m+1}) $$
(46)

From inequalities (45) and (46), we have

$$ {\rm EPA}(\langle m_{1},\ldots,m_{l},(m+1)_{j},m_{l+1},\ldots,m_m\rangle)={\rm EPA}({\mathcal F}^{*}_{m+1}) $$
(47)

We find the set \(\langle m_{1},\ldots,m_{l},(m+1)_{j},m_{l+1},\ldots,m_m\rangle\) achieving the maximum EPA by using m + 1 nodes, and this set contains \(\mathcal{F}^{*}_{m}=\langle m_{1},\ldots,m_{l},m_{l+1},\ldots,m_m\rangle\).

In the above proof, we implicitly assume N ≥ m + i. However, it’s easy to get that node (m + 1)1 can not be m i when N < m + i. Because according to the Relay priority rule in Proposition 5.2, when we assume (m + 1)1 = m i , we implicitly exclude nodes m 1,…, m i−1 as the forwarding candidates. The number of nodes that can be chosen is N − (i − 1) < (m + i) − (i − 1) = m + 1, then we do not have enough nodes to choose for \(\mathcal{F}^{*}_{m+1}\).

Case II: (m + 1)1 ≠ m i , ∀ 2 ≤ i ≤ m

In this case, we have two sub-cases:

  1. 1)

    (m + 1)1 ≠ m 1

Then \((m+1)_{1}\notin \mathcal{F}^{*}_{m}\). Assume for any feasible \(\mathcal{F}^{*}_{m}, \langle (m+1)_2,\ldots,(m+1)_{m+1}\rangle\neq\mathcal{F}^{*}_{m}\), we can replace \(\langle (m+1)_2,\ldots,(m+1)_{m+1}\rangle\) in \(\mathcal{F}^{*}_{m+1}\) by \(\mathcal{F}^{*}_{m}\) to get a sequence \(\langle (m+1)_1,\mathcal{F}^{*}_{m}\rangle\) which achieves at least an equal or larger EPA than EPA(\(\mathcal{F}^{*}_{m+1}\)). So \(\exists \mathcal{F}^{*}_{m+1}\), s.t. \(\mathcal{F}^{*}_{m}\subset \mathcal{F}^{*}_{m+1}\).

  1. 2)

    (m + 1)1 = m 1

To find \(\langle (m+1)_2,\ldots,(m+1)_{m+1}\rangle\) is equivalent to selecting m nodes achieving maximum EPA from the remained node set \(\mathcal{C}_{m_{1}}\setminus\{m_{1}\}\) in which all the nodes have advancements larger than \(d_{{m_{1} }}\). As \(\mathcal{F}^{*}_{m}\setminus\{m_{1}\}\) is the node set that achieves the maximum EPA by selecting m − 1 nodes in \(\mathcal{C}_{m_{1}}\setminus\{m_{1}\}\), by the induction assumption, we have \(\mathcal{F}^{*}_{m}\setminus\{m_{1}\}\subset\langle (m+1)_2,\ldots,(m+1)_{m+1}\rangle\), then \(\mathcal{F}^{*}_{m}\subset\mathcal{F}^{*}_{m+1}\).

From the induction above, we know for arbitrary finite node number, N ≥ 1, we have ∀ \(\mathcal{F}^{*}_{r-1}, \exists \mathcal{F}^{*}_{r}\) s.t. \(\mathcal{F}^{*}_{r-1}\subset\mathcal{F}^{*}_{r}, \forall 1\leq r\leq N\).□

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, K., Yang, J. & Lou, W. On energy efficiency of geographic opportunistic routing in lossy multihop wireless networks. Wireless Netw 18, 967–983 (2012). https://doi.org/10.1007/s11276-012-0445-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-012-0445-0

Keywords

Navigation