Skip to main content
Log in

An efficient scheduling scheme for hybrid TDMA and SDMA systems with smart antennas in WLANs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Smart antennas are an emerging technology that exploits spatial diversity and allows an access point (AP) to simultaneously transmit downlink packets to multiple stations (STAs). In this paper, we propose a new AP scheduling scheme for hybrid TDMA (Time Division Multiple Access) and SDMA (Spatial Division Multiple Access). Our scheduling scheme aims at maximizing the system throughput while maintaining the fairness among STAs and guaranteeing Quality of Service of different traffic classes. The original contributions of our scheduling scheme include: (1) We propose a transmission framework that allows TDMA STAs to transmit in the TDMA fashion, and non-TDMA STAs to compete channel access in the CSMA/CA fashion. (2) We analyze the performance of CSMA/CA STAs and determine the optimal contention window size for each STA to minimize the collision rate subject to the contention period constraint. (3) We propose an analysis to determine the minimal length of time allocated to non-TDMA STAs during a transmission period such that each STA will have a success transmission probability above a specified threshold in each period. (4) We propose a scheduling algorithm that schedules simultaneous packet transmission to multiple STAs such that maximal number of packets can be transmitted to multiple STAs without causing unacceptable interference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gupta, P., Sankarasubramaniam, Y., & Stolyar, A. (2005). Random-access scheduling with service differentiation in wireless networks. In Proceedings of IEEE INFOCOM 2005. Miami, USA, March 13–17, 2005.

  2. Alexiou, A., & Haardt, M. (2004). Smart antenna technologies for future wireless systems: Trends and challenges. IEEE Communication Magazine, 42(9), 90–97.

    Article  Google Scholar 

  3. Yin, H., & Liu, H. (2002). Performance of space-division multiple-access (SDMA) with scheduling. IEEE Transactions on Wireless Communications, 1(4), 611–618.

    Article  Google Scholar 

  4. Comisso, M., Babich, F., D’Orlando, M., & Mania, L. (2006). Simultaneous communications in ad-hoc networks using smart antennas in multipath environment. In Proceedings of IEEE GLOBECOM 2006, San Franciso, USA, November 27–December 1, 2006.

  5. Fakih, K., Feng, J., Diouris, J., & Andrieux, G. (2008). Medium access control for wireless networks using smart antenna chapter 7. In Medium access control in wireless networks. Hauppauge, NY: Nova Science Publishers, pp. 177–205.

  6. Balanis, C. A., & Ioannides, P. I. (2007). Introduction to smart antennas. San Rafael, CA: Morgan & Claypool Publishers.

    Google Scholar 

  7. Zhou, S., Niu, Z. (2008). An uplink medium access protocol with SDMA support for multiple-antenna WLANs. In Proceedings of IEEE WCNC 2008, Las Vegas, USA, March 31–April 3, 2008.

  8. Babich, F., & Comisso, M. (2009). Throughput and delay analysis of 802.11-based wireless networks using smart and directional antennas. IEEE Transactions on Communications, 57(5), 1413–1423.

    Article  Google Scholar 

  9. Lee, B. G., Park, D., & Seo, H. (2009). Wireless Communications Resource Management. Singapore: John Wiley & Sons (Asia) Pte Ltd.

    Google Scholar 

  10. Shad, F., Todd, T. D., Kezys, V., & Litva, J. (2001). Dynamic slot (DSA) in indoor SDMA/TDMA using a smart antenna basestation. IEEE/ACM Transcation on Networking, 9(1), 69–81.

    Article  Google Scholar 

  11. Sinha, R., Todd, T. D., Shad, F., & Kezys V. (2001). Forward-link capacity in smart antenna basestations with dynamic slot allocation. IEEE Transactions on Vehicular Technology, 50(4):1024–1038.

    Article  Google Scholar 

  12. Bianchi, G., Messina, D., Scalia, L., & Tinnirello, I. (2005). A space-division time-division multiple access scheme for high throughput provisioning in WLANs. In Proceedings of IEEE ICC’05, Seoul, Korea, May 16–20, 2005.

  13. Amaldi, E., Capone, A., Malucelli, F., & Villa, G. (2004). Optimization of packet scheduling in wireless systems with smart antennas: Geometric models and algorithms. In IEEE Proceedings of ICC 2004, Vol. 7, Paris, France, 20–24 June 2004, pp. 4238–4242.

  14. Chang, C. T., Chang, C. Y., & Lu, Y. J. (2010). Maximizing throughput by exploiting spatial reuse opportunities with smart antenna systems. In IEEE Proceedings of ICC 2010. May 23–27, 2010.

  15. Navda, V., Subramanian, A. P., Dhanasekaran, K., Timm-Giel, A., & Das, S. (2007). MobiSteer: Using steerable beam directional antenna for vehicular network access. In Proceedings of ACM MobiSys’07. San Juan, Puerto Rico, June 11–14, 2007.

  16. Nadeem, T. (2010). Analysis and enhancements for IEEE 802.11 networks using directional antenna with opportunistic mechanisms. IEEE Transcation Vehicular Technology 59,(6), 3012–3024.

    Article  Google Scholar 

  17. Deng, D. J., & Yen, H. C. (2005). Quality-of-service provisioning system for multimedia transmission in IEEE 802.11 wireless LANs. IEEE Journal on Selected Areas in Communications, 23(6), 1240–1252.

    Article  Google Scholar 

  18. Hsu, J. L., & Rubin, I. (2006). Performance analysis of directional CSMA/CA MAC protocol in mobile Ad hoc networks. In Proceedings of IEEE ICC 2006, Istanbul, Turkey, June 11–15, 2006.

  19. Sharma, G., Ganesh, A., Key, P. (2006). Performance analysis of contention based medium access control protocols. In Proceedings of IEEE INFOCOM 2006, Barcelona, Spain, April 23–29, 2006.

  20. Cheng, Y., Ling, X., & Zhuang, W. (2009). A protocol-independent approach for analyzing the optimal operation point of CSMA/CA protocols. In Proceedings of IEEE INFOCOM 2009. Rio de Janeiro, Brazil, April 19–25, 2009.

  21. Deng, D., Ke, C., Chen, H., & Huang, Y. (2008). Contention window optimization for IEEE 802.11 DCF access control. IEEE Transactions on Wireless Communications, 7(12), 5129–5135.

    Article  Google Scholar 

  22. Oh, S. M., & Kim, J. H. (2005). The analysis of the optimal contention period of broadband wireless access network. In Proceedings of IEEE PerCom 2005 Workshop, Hawaii, USA, March 8–12, 2005.

  23. Wu, L., & Tseng, Y. C. Design and analysis of contention-based request schemes for best-effort traffics in IEEE 802.16 networks. IEEE Communications Letters, 12(8), 602–604.

    Article  Google Scholar 

  24. Rajkumar, R., Lee, C., Lehoczky, J. P., & Siewiorek D. P. (1998). Practical solutions for QoS-based resource allocation. In Proceedings of IEEE real-time systems symposium, Washington DC, December 02–04, 1998.

  25. Lotker, Z., & Peleg, D. (2010). Structure and algorithms in the SINR wireless model. ACM SIGACT News, 41(2), 74–84.

    Article  Google Scholar 

  26. HFA3863. (2001). Direct sequence spread spectrum baseband processor with rake receiver and equalizer. Intersil Inc., December 2001.

  27. Proakis, J. G. (2001). Digital communications (4th Ed.). NY: MCGraw-Hill.

    Google Scholar 

  28. Vlavianos, A., Law, L. K., Broustis, I., Krishnamurthy, S. V., & Faloutsos, M. (2004). Assessing link quality in IEEE 802.11 wireless networks: Which is the right metric? IEEE PIMRC 2008, September 15–18, 2004, Cannes, France. (Invited Paper).

  29. Paris, R. B., & Kaminsky, D. (2001). Asymptotics and the Mellin–Barnes integrals. New York: Cambridge University Press.

    Book  Google Scholar 

  30. Grilo, A., Macedo, M., & Nunes, M. (2003). A scheduling algorithm for QoS support in IEEE802.11 networks. IEEE in Wireless Communications Magazine, 10(3), 36–43.

    Article  Google Scholar 

  31. Singh, H., & Singh, S., (2004). Smart-802.11b MAC protocol for use with smart antennas. In Proceedings of IEEE ICC (Vol. 6, pp. 3684–3688). June 20–24, 2004.

Download references

Acknowledgments

This work was supported by grants from Research Grants Council of Hong Kong [Project No. CityU 114710] and NSF China Grant No. 60970117 and No. 61173137.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary K. W. Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, G.K.W., Jia, X. An efficient scheduling scheme for hybrid TDMA and SDMA systems with smart antennas in WLANs. Wireless Netw 19, 259–271 (2013). https://doi.org/10.1007/s11276-012-0464-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-012-0464-x

Keywords

Navigation