Skip to main content
Log in

General interference analysis of M-QAM and M-PSK wireless communications

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This work includes an accurate and general technique, which has been developed to analyze the symbol-error-rate (SER) of coherent M-Quadrature Amplitude Modulation (QAM) and Phase Shift Keying (PSK) schemes for various conditions of the transmission. A calculation scheme has been presented dealing with Additive White Gaussian Noise and different fading effects influencing the analyzed M-ary QAM or PSK signals. Furthermore, the authors have considered the effects of multiple interference signals embedded into a stochastic model having numerous parameters, which can be assumed as random variables with adjustable distributions. The resulted M-QAM and M-PSK SER expressions have been extended for multi-carrier transmission based on the analytical calculation of the stochastic interference model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shah, A. M., Haimovich, M. K. S., & Alouini, M. S. (2000). Exact bit error probability for optimum combining with a Rayleigh fading Gaussian cochannel interferer. IEEE Transactions on Communications, 48, 908–912.

    Article  Google Scholar 

  2. Aalo, V. A., & Zhang, J. (2000). Performance of antenna array systems with optimum combining in a Rayleigh fading environment. IEEE Communications Letters, 4(12), 387–389.

    Article  Google Scholar 

  3. Ahn, K. S. (2009). Performance analysis of MIMO-MRC system in the presence of multiple interferers and noise over rayleigh fading channels. IEEE Transactions on Wireless Communications, 8(7), 3727–3735.

    Article  Google Scholar 

  4. Bukofzer, D. C. (1986). Performance of receivers in digital radio applications operating in the presence of noise and jamming. In IEEE mlitary communications conference – communications-computers: Teamed for the 90's, MILCOM 1986, Vol. 3, pp. 39.1.1–39.1.7. doi:10.1109/MILCOM.1986.4805835.

  5. Coco, R. (1988). Symbol error rate curves for M-QAM signals with multiple cochannel interferers. IEEE Transactions on Communications, 36(8), 980–983.

    Article  Google Scholar 

  6. Debang, L., & Haimovich, A. M. (2004). Exact average symbol error probability of optimum combining with arbitrary interference power. IEEE Communications Letters, 8(4), 226–228.

    Article  Google Scholar 

  7. Gibson, J. D. (1999). Mobile communications handbook. Springer: CRC Press LLC.

    Google Scholar 

  8. Gradshteyn, L., & Ryzhik, I. (2000). Table of integrals, series, and products, 6 edn. San Diego, CA: Academic Press.

    Google Scholar 

  9. Hamdi, K., & Pap, L. (2010). A unified framework for interference analysis of noncoherent MFSK wireless communications. IEEE Transactions on Communications, 58(8), 2333–2344. doi:10.1109/TCOMM.2010.08.080391.

    Article  Google Scholar 

  10. Jakes, W. C. (1994). Microwave mobile communications. Piscataway, NJ: Wiley-IEEE Press.

    Book  Google Scholar 

  11. Lao, D., & Haimovich, A. (2003). Exact closed-form performance analysis of optimum combining with multiple co-channel interferers and Rayleigh fading. IEEE Transactions on Communications, 51(6), 995–1003.

    Article  Google Scholar 

  12. Chiani, M. Z., & Win, A. Z. (2005). On optimum combining of M-PSK signals with unequal-power interferers and noise. IEEE Transactions on Communications, 53(1), 44–47.

    Article  Google Scholar 

  13. Chiani, M. Z., Win, A. Z. R. K. M., & Winters, J. H. (2003). Bounds and approximations for optimum combining of signals in the presence of multiple cochannel interferers and thermal noise. IEEE Transactions on Communications 51(2), 296–307.

    Article  Google Scholar 

  14. Shimbo, O. R. F., & Celebiler, M. (1973). Performance of M-ary PSK systems in gaussian noise and ISI. IEEE Transactions on Information Theory, 19(7), 44–58.

    Article  MATH  Google Scholar 

  15. Proakis, J., & Salehi, M. (2008). Digital communications, 5 edn. New York: McGraw-Hill.

    Google Scholar 

  16. Mallik, R. K., Win, M. Z., & Chiani, M. (2002). Exact analysis of optimum combining in interference and noise over a Rayleigh fading channel. In IEEE International Conference on Communications, ICC 2002, Vol. 3, pp. 1954–1958. doi:10.1109/ICC.2002.997189.

  17. Shah, A., & Haimovich, A. (1998). Performance analysis of optimum combining in wireless communications with Rayleigh fading and cochannel interference. IEEE Transactions on Communications, 46(4), 473–479.

    Article  Google Scholar 

  18. Shimbo, O., & Celebiler, M. (1971). The probability of error due to ISI and Gaussian noise in digital communication systems. IEEE Transactions on Communications, 19, 113–120.

    Article  Google Scholar 

  19. Siebert, W. (1988). Circuits, signals, and systems. In Fourier transforms and Fourier’s theorem (11th ed., pp. 409–413). Cambridge, MA: MIT Press.

  20. Winters, J. H. (1984). Optimum combining in digital mobile radio with cochannel interference. IEEE Journal on Selected Areas in Communications, SAC-2, 528–539.

    Article  Google Scholar 

  21. Zengjun Xiang Tho Le-Ngoc, G. B. (2000). Performance of coherent MQAM schemes in the presence of frequence-selective rayleigh fading and CCI4. Mobile Networks and Applications, 5(1), 44–58.

    Google Scholar 

Download references

Acknowledgments

Our work presented in this paper was supported from the KMOP-1.1.2-08/1-2008-0001 project by the BME-Infokom Innovátor Nonprofit Kft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Mráz.

Appendices

Appendix 1: Calculation of the equivalent Gaussian component

1.1 Interference component

The deduction of expression (12) will be detailed as

$$ {\mathbb{E}}\left[ {{\left( R_{m,k}^{\left( 2 \right)} \right)}^2} \right]={\mathbb{E}}\left[ \left( \hbox{Re}{{\left\{ \frac{2\sqrt{{s_0}{s_k}}}{{{T}_{\rm s}}}\int\limits_{-\infty }^{\infty }{{{\eta }_{k}}(t)\left( d_{m}^{*} \right){{g}^{*}}(t){{e}^{j\left( 2\pi \left( {{f}_{0}}-{f_k} \right)t+{{\Upphi }_{0}} \right)}}dt} \right\}}} \right)^2 \right]. $$
(50)

The ∑ K k=1 sum will be neglected during this calculation, since the interference components arisen from different sources are independent. Furthermore, the sum components will be eliminated during the calculation of the expected value and cross-products will be zeros during the operation of raising to the second power.

$$ \begin{aligned} &{\mathbb{E}}\left[ {{\left( R_{m,k}^{\left( 2 \right)} \right)}^2}\right]\\ &=\frac{4{s_k}{s_0}}{4{{T}_{\rm s}}^2}{\mathbb{E}}\left[ {{\left( \int\limits_{-\infty }^{\infty }{\left[ {{\eta }_{k}}(t)d_{l}^{*}{{g}^{*}}(t){{e}^{j\left( 2\pi \Updelta {f_k}t+{{\Upphi }_{0}} \right)}}+{{\eta}_{k}}^{*}(t){d_l}g(t){{e}^{-j\left( 2\pi \Updelta {f_k}t+{{\Upphi}_{0}} \right)}} \right]}dt \right)}^2} \right]\\ &=\frac{4{s_0}{s_k}}{4{{T}_{\rm s}}^2}{\mathbb{E}}\left[ \left( \int\limits_{-\infty }^{\infty }{\int\limits_{-\infty }^{\infty }{\left[ {{\eta }_{k}}(t)d_{l}^{*}{{g}^{*}}(t){{e}^{j\left( 2\pi \Updelta {f_k}t+{{\Upphi }_{0}} \right)}}+\eta _{k}^{*}(t){d_l}g(t){{e}^{-j\left( 2\pi \Updelta {f_k}t+{{\Upphi }_{0}} \right)}} \right]}} \right.\right.\\ &\left. \cdot \left[ {{\eta }_{k}}\left( \rho \right)d_{l}^{*}{{g}^{*}}\left(\rho \right){{e}^{j\left( 2\pi \Updelta {f_k}\rho +{{\Upphi }_{0}} \right)}}+\eta _{k}^{*}\left( \rho \right){d_l}g\left( \rho \right){{e}^{-j\left( 2\pi \Updelta {f_k}\rho +{{\Upphi }_{0}} \right)}} \right]dtd\rho \right]\\ &=\frac{4{s_k}{s_0}}{4{{T}_{\rm s}}^2}\int\limits_{-\infty }^{\infty }{\int\limits_{-\infty }^{\infty }{{{R}_{{{\eta }_{k}}}}\left( t-\rho \right){{\left| {d_l} \right|}^2}\left[ {{g}^{*}}(t)g\left( \rho \right){{e}^{j2\pi \Updelta {f_k}\left( t-\rho \right)}}+g(t){{g}^{*}}\left( \rho \right){{e}^{-j2\pi \Updelta {f_k}\left( t-\rho \right)}} \right]}}dtd\rho, \end{aligned} $$
(51)

since the correlation function has a symmetrical attribute, i.e. \({{{R}_{{{\eta }_{k}}}}\left( t-\rho \right)={{R}_{{{\eta }_{k}}}}\left( \rho -t \right)}\). Hereafter, the phase \(\Upphi_0\) will be neglected, as η k (t) also disposes of a random phase. In this way it has effect of no interest in final results’ point of view. Equal cross-products will remain, since in-phase and quadrature components are independent. After the introduction of new variables (co-ordinate transformation)

$$ \left(\begin{array}{l} \tau =t-\rho \\ \eta =t\\ \end{array}, \left | \begin{array}{ll}\frac{\partial \tau}{\partial t} & \frac{\partial \eta }{\partial t}\\ \frac{\partial \tau }{\partial \rho } & \frac{\partial \eta }{\partial \rho} \end{array} \right | = \left | \begin{array}{ll} 1 & 1\\ -1 & 0 \end{array} \right | = 1\right) $$
(52)

let us notice, that

$$ {\mathcal{F}}\left\{ {{R}_{{{\eta }_{k}}}}\left( \tau \right){{e}^{j2\pi \Updelta {f_k}\tau }} \right\}=\int\limits_{-\infty }^{\infty }{{{R}_{{{\eta }_{k}}}}\left( \tau \right){{e}^{j2\pi \Updelta {f_k}\tau }}{{e}^{-j2\pi f\tau }}}d\tau ={{S}_{{{\eta }_{k}}}}\left( f-\Updelta {f_k} \right), $$
(53)

where \(\mathcal{F}\) denotes the Fourier-transform, and

$$ {\mathcal{F}}\left\{ {{g}^{*}}\left( \tau \right)g\left( t-\tau \right) \right\}=\int\limits_{-\infty }^{\infty }{{{g}^{*}}\left( \tau \right)g\left( t-\tau \right){{e}^{-j2\pi ft}}d \tau}={{\left| G\left( f \right) \right|}^2} $$
(54)

in terms of Parseval’s theorem [19]. After that

$$ \begin{aligned} &{\mathbb{E}}\left[ {{\left( R_{m,k}^{\left( 2 \right)} \right)}^2}\right] =\frac{4{s_k}{s_0}}{4{{T}_{\rm s}}^2}{{\left| {d_m} \right|}^2}\left[ \int\limits_{-\infty }^{\infty }{{{S}_{{{\eta }_{k}}}}\left( f-\Updelta {f_k} \right){{\left| G\left( f \right) \right|}^2}}df+\int\limits_{-\infty }^{\infty }{{{S}_{{{\eta }_{k}}}}\left( f+\Updelta {f_k} \right){{\left| G\left( f \right) \right|}^2}}df \right], \end{aligned} $$

and during the symmetry of \({{\left| G\left( f \right) \right|}^2}\), the results of the two integrals above will be equal, i.e.

$$ {\mathbb{E}}\left[ {{\left( R_{m,k}^{\left( 2 \right)} \right)}^2} \right]=2\frac{{4s_k}{s_0}}{{4{T}_{\rm s}}^2}{{\left| {d_m} \right|}^2}\int\limits_{-\infty }^{\infty }{{{S}_{{{\eta }_{k}}}}\left( f-\Updelta {f_k} \right){{\left| G\left( f \right) \right|}^2}}df. $$
(55)

1.2 The AWGN component

Let us consider the detailed calculation of expression (14).

$$ \begin{aligned} {\mathbb{E}}\left[ {{\left( R_{m}^{\left( 3 \right)} \right)}^2}\right]={\mathbb{E}}\left[ {{\left( \hbox{Re}\left\{ \frac{\sqrt{2{s_0}}}{{{T}_{\rm s}}}\int\limits_{-\infty }^{\infty }{n(t)\left( d_{m}^{*} \right){{g}^{*}}(t){{e}^{j\left( 2\pi {{f}_{0}}t+{{\Upphi }_{0}} \right)}}dt} \right\} \right)}^2}\right]\\ & =\frac{2{s_0}}{4{{T}^2}}{\mathbb{E}}\left[ \int\limits_{-\infty }^{\infty }{\int\limits_{-\infty }^{\infty }{\left[ n(t)d_{m}^{*}{{g}^{*}}(t)+{{n}^{*}}(t){d_m}g(t) \right]}}\left[ n\left( \rho \right)d_{m}^{*}{{g}^{*}}\left( \rho \right)+{{n}^{*}}\left( \rho \right){d_m}g\left( \rho \right) \right]dtd\rho \right]\\ & =\frac{2{s_0}}{4{{T}_{\rm s}}^2}\int\limits_{-\infty }^{\infty }{\int\limits_{-\infty }^{\infty }{\left[ {\mathbb{E}}\left[ n(t)\cdot {{n}^{*}}\left( \rho \right) \right]\cdot {{\left| {d_m} \right|}^2}{{g}^{*}}(t)g\left( \rho \right)+{\mathbb{E}}\left[ {{n}^{*}}(t)\cdot n\left( \rho \right) \right]\cdot {{\left| {d_m} \right|}^2}g(t){{g}^{*}}\left( \rho \right) \right]dt}}d\rho \end{aligned} $$
(56)

In the addition above, the two components are equal, therefore

$$ \begin{aligned} {\mathbb{E}}\left[ {{\left( R_{m}^{\left( 3 \right)} \right)}^2} \right]&=\frac{2{s_0}}{4{{T}_{\rm s}}^2}2\int\limits_{-\infty }^{\infty }{\int\limits_{-\infty }^{\infty }{2{N_0}\delta \left( t-\rho \right){{\left| {d_m} \right|}^2}{{g}^{*}}(t)g\left( \rho \right)}}dtd\rho\\ & =\frac{2{s_0}}{{{T}_{\rm s}}^2}{{\left| {d_m} \right|}^2}{N_0}\int\limits_{-\infty }^{\infty }{{{\left| g(t) \right|}^2}dt=\frac{2{s_0}}{{{T}_{\rm s}}}{{\left| {d_m} \right|}^2}{N_0}}, \end{aligned} $$
(57)

since \(\int\limits_{-\infty }^{\infty }{{{\left| g(t) \right|}^2}dt}=1\). Only either of the noise components appears in the final result, since

$$ \begin{aligned} {\mathbb{E}}\left[ n(t)n\left( \rho \right) \right]&={\mathbb{E}}\left[ \left( {{n}_{\rm I}}(t)+j{{n}_{\rm Q}}(t) \right)\left( {{n}_{\rm I}}\left( \rho \right)+j{{n}_{\rm Q}}\left( \rho \right) \right)\right]\\ &={\mathbb{E}}\left[ {{n}_{\rm I}}(t){{n}_{\rm I}}\left(\rho \right) \right]-{\mathbb{E}}\left[ {{n}_{\rm Q}}(t){{n}_{\rm Q}}\left( \rho \right) \right]=0, \end{aligned} $$
(58)

through

$$ {\mathbb{E}}\left[ {{n}_{\rm I}}(t){{n}_{\rm Q}}\left( \rho \right) \right]={\mathbb{E}}\left[ {{n}_{\rm I}}\left( \rho \right){{n}_{\rm Q}}(t) \right]=0. $$

Appendix 2: Calculation of the spectral overlap for OFDM

The general expression of the spectral overlap has been defined in (16) as

$$ v\left( \Updelta {f_k} \right)=\frac{\int\limits_{-\infty }^{\infty }{{{S}_{{{\eta }_{k}}}}\left( f-\Updelta {f_k} \right)S\left( f \right)df}}{\int\limits_{-\infty }^{\infty }{S\left( f \right)df}}. $$
(59)

Let us calculate the \(S\left( f \right)\) spectral power density function of an OFDM subcarrier. Assuming rectangular shapes for s(t) time-domain signals for the subcarriers

$$ s(t)=\left\{\begin{array}{l} \sqrt{{s_0}}\left[ \hbox{V} \right],\hbox{ if }t\in \left[ -\frac{T_{\rm s}}{2},\frac{T_{\rm s}}{2} \right) \\ 0,\hbox{ otherwise.} \\ \end{array} \right. $$
(60)

After that, the \(S\left( f \right)\) spectral power density function of the s(t) useful signal can be expressed by applying the Fourier-transformation

$$ \begin{aligned} S\left(f\right)&=\frac{1}{T_{\rm s}}{{\left| \int\limits_{-\frac{T_{\rm s}}{2}}^{\frac{T_{\rm s}}{2}}{s(t){{e}^{-j2\pi ft}}dt} \right|}^2}=\frac{{s_0}}{T_{\rm s}}{{\left| \int\limits_{-\frac{T_{\rm s}}{2}}^{\frac{T_{\rm s}}{2}}{{{e}^{-j2\pi ft}}dt} \right|}^2}=\frac{{s_0}}{T_{\rm s}}{{\left| \frac{\sin \left( \pi f T_{\rm s} \right)}{\pi f} \right|}^2}\\ &={s_0}T_{\rm s}{{\left( \frac{\sin \left( \pi f T_{\rm s} \right)}{\pi f T_{\rm s} } \right)}^2} \left[ \frac{\hbox{W}}{\hbox{Hz}} \right]. \end{aligned} $$
(61)

Similarly, by assuming the same T s symbol period for the interferers, the spectral power density function of interfering signal k can be given with as \({{S}_{{{\eta }_{k}}}}\left( f \right)={{T}_{\rm s}}{{\left( \frac{\sin \left( \pi f T_{\rm s} \right)}{\pi f T_{\rm s} } \right)}^2}\). Since R η k (0) = 1, the spectral overlap can be expressed as

$$ \begin{aligned} v\left( \Updelta {f_k} \right)&=\frac{\int\limits_{-\infty }^{\infty }{{{S}_{{{\eta }_{k}}}}\left( f-\Updelta {f_k} \right)S\left( f \right)df}}{\int\limits_{-\infty }^{\infty }{S\left( f \right)df}}=\frac{\int\limits_{-\infty }^{\infty }{T_{\rm s}{{\left( \frac{\sin \left( \pi \left( f-\Updelta {f_k} \right)T_{\rm s} \right)}{\pi \left( f-\Updelta {f_k} \right)T_{\rm s}} \right)}^2}{s_0}T_{\rm s}{{\left( \frac{\sin \left( \pi fT_{\rm s} \right)}{\pi fT_{\rm s}} \right)}^2}df}}{\int\limits_{-\infty }^{\infty }{{s_0}T_{\rm s}{{\left( \frac{\sin \left( \pi fT_{\rm s} \right)}{\pi fT_{\rm s}} \right)}^2}df}} \\ & =T_{\rm s}\frac{\int\limits_{-\infty }^{\infty }{{{\left( \frac{\sin \left( \pi \left( f-\Updelta {f_k} \right)T_{\rm s} \right)}{\pi \left( f-\Updelta {f_k} \right)T_{\rm s}} \right)}^2}{{\left( \frac{\sin \left( \pi fT_{\rm s} \right)}{\pi fT_{\rm s}} \right)}^2}df}}{\int\limits_{-\infty }^{\infty }{{{\left( \frac{\sin \left( \pi fT_{\rm s} \right)}{\pi fT_{\rm s}} \right)}^2}df}}. \end{aligned} $$
(62)

The integral in the denominator of (62) considering \(T_{\rm s}=\frac{1}{\Updelta f_{\rm c}}\) can be given with

$$ \int\limits_{-\infty }^{\infty }{{{\left( \frac{\sin \left( \pi \frac{f}{\Updelta f_{\rm c}} \right)}{\pi \frac{f}{\Updelta f_{\rm c}}} \right)}^2}}df=\Updelta f_{\rm c}. $$
(63)

1.1 Overlap for integer multiple distances of the subcarrier spacing

Let us consider the calculation of expression (62) by substituting (63) for \(\Updelta f_k=l\cdot \Updelta f_c\) frequency distances of the interferer, i.e. for \({l\in \mathbb{N}}\) multiples of the subcarrier spacing. In this case

$$ v\left( l\cdot \Updelta f_c \right)=\frac{T_{\rm s}}{\Updelta f_c}\int\limits_{-\infty }^{\infty }{{{\left( \frac{\sin \left(\pi \frac{ \left( f-l\cdot \Updelta f_c \right)}{\Updelta f_c} \right)}{\pi\frac{ \left( f-l\cdot \Updelta f_c \right)}{\Updelta f_c}} \right)}^2}{{\left( \frac{\sin \left(\pi \frac{ f}{\Updelta f_c} \right)}{\pi\frac{f}{\Updelta f_c}} \right)}^2}df}=\frac{T_{\rm s}}{\Updelta f_c}\frac{\Updelta f_c}{{l^2}{{\pi }^2}}=\frac{T_{\rm s}}{{l^2}{{\pi }^2}}. $$
(64)

We can calculate \(v\left( l\cdot \Updelta f_c \right)\) also for l = 0 by the application of the integration with substitution, i.e. let \(x=\pi f/\Updelta {f_c}\Rightarrow f=x\Updelta {f_c}/\pi \). Accordingly

$$ \begin{aligned} v\left(0\cdot \Updelta f_c \right)&=\frac{{{T}_{s}}}{\Updelta {f_c}}\int\limits_{-\infty }^{\infty }{\frac{{{\sin }^2}\left( x-0 \right)}{{{\left( x-0 \right)}^2}}\frac{{{\sin }^2}\left( x \right)}{{{x}^2}}\frac{df}{dx}dx}=\frac{{{T}_{s}}}{\Updelta {f_c}}\int\limits_{-\infty }^{\infty }{\frac{{{\sin }^{4}}\left( x \right)}{{{x}^{4}}}\frac{df}{dx}dx}\\ & =\frac{{{T}_{s}}}{\Updelta {f_c}}\frac{\Updelta {f_c}}{\pi }\int\limits_{-\infty }^{\infty }{\frac{{{\sin }^{4}}\left( x \right)}{{{x}^{4}}}dx}=\frac{{{T}_{s}}}{\pi }\cdot \frac{2}{3}\pi ={{T}_{s}}\frac{2}{3}=0,66\dot{6}\cdot{{T}_{s}}, \end{aligned} $$
(65)

since \(df/dx=\Updelta {f_c}/\pi \). Finally, we get the general form of \(v\left( l\cdot \Updelta f_c \right)\) as

$$ v_{\rm OFDM}\left( l\cdot \Updelta f \right)=\left\{\begin{array}{ll} \frac{1}{{l^2}{{\pi }^2}}T_{\rm s},&l\neq0 \\ \frac{2}{3}T_{\rm s}, & l=0. \end{array} \right. $$
(66)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mráz, A., Pap, L. General interference analysis of M-QAM and M-PSK wireless communications. Wireless Netw 19, 331–344 (2013). https://doi.org/10.1007/s11276-012-0469-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-012-0469-5

Keywords

Navigation