Skip to main content

Advertisement

Log in

Efficient reporting node selection-based MAC protocol for wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless sensor networks rely on the cooperative effort of the densely deployed sensor nodes to report the detected events. As a result, sensor observations are highly correlated in the space domain. Typically, multiple sensor nodes may report the same event. Consequently, redundant information may be transmitted by the different sensor nodes, leading thus to unnecessary energy wastage. In this paper, we investigate the relationship between the spatial correlation and the number of reporting nodes by developing a new analytical model based on the theoretical framework of the CC-MAC (correlation-based collaborative medium access control) protocol (Vuran and Akyildiz in IEEE/ACM Trans Netw 14(2): 316–32912006). We show that the reporting task can be delegated to a small subset of sensor nodes without transgressing the distortion constraint. Building on this result, a simple spatial correlation medium access control protocol is then proposed to achieve further energy conservation and faster reporting latency than CC-MAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. E(N) is the average consumed energy by the network when the number of reporting node is N.

References

  1. Vuran, M. C., & Akyildiz, I. F. (2006). Spatial correlation-based collaborative medium access control in wireless sensor networks. IEEE/ACM Transactions On Networking, 14(2), 316–329.

    Article  Google Scholar 

  2. Miller, M., & Vaidya, N. (2005). A mac protocol to reduce sensor network energy consumption using a wake-up radio. IEEE Transactions on Mobile Computing, 4(3), 228–242.

    Article  Google Scholar 

  3. Ye, W., Heidemann, J., & Estrin, D. (2004). Medium access control with coordinated adaptive sleeping for wireless sensor networks. IEEE/ACM Transactions on Networking, 12(3), 493–506.

    Article  Google Scholar 

  4. van Dam, T., & Langendoen, K. (2003). An adaptive energy-efficient MAC protocol for wireless sensor networks. In Proceeding of ACM SenSys 2003 (pp. 171–180). Los Angeles, CA.

  5. Shah, R. C., & Rabaey, H. M. (2002). Energy aware routing for low energy ad hoc sensor networks. In IEEE wireless communication and networking conference. Orlando, FL, USA.

  6. Chang, J., & Tassiulas, L. (2004). Maximum lifetime routing in wireless sensor networks. IEEE/ACM Transactions On Networking, 12(4), 609–619.

    Article  Google Scholar 

  7. Polastre, J., Hill, J., & Culler, D. (2004). Versatile low power media access for wireless sensor networks. In Proceedings of the international conference on embedded networked sensor systems (SenSys) (pp. 95–107).

  8. Rhee, I., Warrier, A., Aia, M., & Min, J. (2005). Z-MAC: A hybrid MAC for wireless sensor networks. In Proceedings of the international conference on embedded networked sensor systems (SenSys) (pp. 90–101).

  9. El-Hoiydi, A., & Decotignie, J.-D. (2004). WiseMAC: An ultra low power MAC protocol for multi-hop wireless sensor networks. In Proceedings of the international workshop on algorithmic aspects of wireless sensor networks (Algosensors) (pp. 18–31).

  10. Ye, W., Silva, F., & Heidemann, J. (2006). Ultra-low duty cycle MAC with scheduled channel polling. In Proceeding of SenSys’06. Boulder, Colorado, USA.

  11. Shi, X., & Stromberg, G. (2007). SyncWUF: An Ultra low-power MAC protocol for wireless sensor networks. IEEE Transactions on Mobile Computing, 6(1), 115–125.

    Article  Google Scholar 

  12. Chiasserini, C. F., & Garetto, M. (2006). An analytical model for wireless sensor networks with sleeping nodes. IEEE Transactions on Mobile Computing, 5(12), 1706–1718.

    Article  Google Scholar 

  13. Cristescu, R., Beferull-Lozano, B., & Vetterli, M. (2004) On network correlated data gathering. In Proceedings IEEE INFOCOM.

  14. Vuran, M. C., Akan, Ö. B., & Akyildiz, I. F. (2004). Spatio-temporal correlation: Theory and applications for wireless sensor networks. Computer Networks Journal (Elsevier), 45(3), 245–259.

    Article  MATH  Google Scholar 

  15. Singh, S., & Raghavendra, C. S. (1998). PAMAS: Power aware multi-access protocol with signaling for ad hoc networks (pp. 5–26). New York: ACM Computer Communication, Review.

  16. Dai, F., & Wu, J. (2003). Distributed dominant pruning in ad hoc wireless networks. In Proceedings of IEEE international conference on communications. Anchorage, USA.

  17. Tilak, S., Abu-Ghazaleh, N. B., & Heinzelman, W. (2002). Infrastructure tradeoffs for sensor networks. In Proceedings of ACM WSNA 2002 (pp. 49–58). Atlanta, GA, USA.

  18. Akan, O. B., & Akyildiz end I. F. (2005). Event-to-Sink reliable transport for wireless sensor networs. IEEE/ACM Transactions on Networking, 13(5), 1003–1016.

    Google Scholar 

  19. Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In Proceedings sixth annual International conference on mobile computing and networks (MobiCom 2000). Boston, Massachusetts.

  20. Intanagonwiwat, C., Estrin, D., Govindan, R., & Heidemann, J. (2002). Impact of network density on data aggregation in wireless sensor networks. In Proceedings 22nd international conference on distributed computing systems (pp. 457–458).

  21. ISO/IEC IEEE 802.11 Standard. (1999). Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

  22. Bouabdallah, F., Bouabdallah, N., & Boutaba, R. (2008). Towards reliable and efficient reporting in wireless sensor networks. IEEE Transaction on Mobile Computing, 7(8), 978–994.

    Google Scholar 

  23. Suber, G. L. (2001). Principles of mobile communication. Norwell, MA: Kluwer.

    Google Scholar 

  24. IEEE, IEEE Standard 802.15.4. (2003). Wireless medium access control (MAC) and physical layer specifications for low-rate wireless personal area networks (LR-WPANs).

  25. Akiyldiz, I., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communication Magazine, 40(8), 102–114.

    Article  Google Scholar 

  26. Shi, Q., Kyperountas, S., Correal, N. S., & Niu, F. (2005). Performance analysis of relative location estimation for multihop wireless sensor networks. IEEE Journal on Selected Areas in Communications, 23(4), 830–838.

    Google Scholar 

  27. The Network Simulator—ns-2. [Online]. Available: http://www.isi.edu/nsnam/ns.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatma Bouabdallah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouabdallah, F., Bouabdallah, N. & Boutaba, R. Efficient reporting node selection-based MAC protocol for wireless sensor networks. Wireless Netw 19, 373–391 (2013). https://doi.org/10.1007/s11276-012-0473-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-012-0473-9

Keywords

Navigation