Skip to main content
Log in

Novel power-based routing metrics for multi-channel multi-interface wireless mesh networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper the problem of selecting optimal paths in a MCMI (Multi-Channel Multi-Interface) WMN (Wireless Mesh Network) is considered. The WMNs are characterized by high dynamic range of the received signal level, especially in the indoor environment. To improve the existing routing metrics and track fast changes that occur in the link state, a corresponding parameter based on the received signal level was assigned to each link. By combining this parameter and known metrics, ETX (Expected Transmission Count), WCETT (Weighted Cumulative ETT) and MIC (Metric of Interference and Channel-switching), three new metrics were formed. All metrics were incorporated in MCR (Multi Channel Routing) protocol and an appropriate propagation model was used for simulations in a real, indoor environment. Proposed metrics, original metrics, MCR protocol, and indoor propagation model were implemented in Glomosim simulator. New metrics were compared against known metrics and also among each other in terms of throughput of user data and average end-to-end delay of the network. The results have shown that proposed metrics significantly outperform original metrics. With this approach, better network performance can be achieved without any additional hardware and with minimal software changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akyildiz, I. F., & Xudong, W. (2005). A survey on wireless mesh networks. IEEE Communications Magazine, 43(9), S23–S30.

    Article  Google Scholar 

  2. Wang, X., Vasilakos, A., Chen, M., Liu, Y., & Kwon, T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  3. Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. Sensor and Ad Hoc Communications and Networks, 46–54. doi:10.1109/SAHCN.2011.5984932.

  4. Hossain, E., & Leung, K. (2008). Wireless mesh networks, architectures and protocols. Heidelberg: Springer.

    Google Scholar 

  5. Zhang, Y., Luo, J., & Hu, H. (2007). Wireless mesh networking: Architectures. Protocols and Standards: Auerbach Publications (CRC Press).

    Google Scholar 

  6. De Couto, S. J., Aguayo, D., Bicket, J., & Morris, R. (2005). A high–throughput path metric for multi-hop wireless routing. Wireless Networks, 11(4), 419–434.

    Article  Google Scholar 

  7. Draves, R., Padhye, J., & Zill, B. (2004). Routing in Multi–Radio, Multi–Hop Wireless Mesh Networks. ACM MOBICOM, 114–128. doi:10.1145/1023720.1023732.

  8. Yang, Y., Wang, J., & Kravets, R. (2005). Designing routing metrics for mesh networks. Santa Clara, USA: IEEE WiMesh.

    Google Scholar 

  9. Yang, Y., Wang, J., & Kravets, R. (2006). Load–balanced routing for mesh networks. ACM SIGMOBILE Mobile Computing and Communications review, 10(4), 3–5.

    Article  Google Scholar 

  10. Yang, Y., Wang, J., & Kravets, R. (2005). Interference-aware load balancing for multihop wireless networks. Department of Computer Science, University of Illinois at Urbana-Champaign Technical Report, no. UIUCDCS-R- 2005-2526: University of Illinois at Urbana-Champaign.

  11. Kyasanur, P., So, J., Chereddi, C., & Vaidya, N. H. (2006). Multi channel mesh networks: Challenges and protocols (invited paper). IEEE Wireless Communications Magazine, 13(2), 30–36.

    Article  Google Scholar 

  12. Kyasanur, P., & Vaidya, N. H. (2005). Routing and interface assignment in multi channel multi interface wireless networks. IEEE Wireless Communications & Networking Conference, 4, 2051–2056.

    Google Scholar 

  13. Kyasanur, P., & Vaidya, N. H. (2006). Routing and link-layer protocols for multi-channel multi-interface ad hoc wireless networks. ACM SIGMOBILE MC., 2R(10), 31–43.

    Article  Google Scholar 

  14. Lee, D. J. Y., & Lee, W. C. Y. (2000). Propagation prediction in and through buildings. IEEE Transactions on Vehicular Technology, 49(5), 1529–1533.

    Article  Google Scholar 

  15. Borenovic, M., & Neskovic, A. Indoor georeferenced RSSI database. Resource documents. http://telekomunikacije.etf.rs/research/wlanpositioning/rssiDatabase.zip.

  16. Glomosim simulator. Resource document. http://pcl.cs.ucla.edu/projects/domains/glomosim.htm.

  17. Johnson, D. (2007). The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks for IPv4. RFC 4728 Microsoft Research.

  18. Perkins, C. E., Belding–Royer, E. M., & Das, S. R. (2003). Ad Hoc On demand Distance Vector (AODV) routing. IETF Experimental RFC 3561.

  19. (1999). IEEE Standard for Wireless LAN-Medium Access Control and Physical Layer Specification, P802.11.

  20. Nasipuri, A., & Das, S. R. (2000). Multichannel CSMA with signal power based channel selection for multihop wireless networks. IEEE Vehicular Technology Conference, 1, 211–218.

    Google Scholar 

  21. Jain, N., Das, S. R., & Nasipuri, A. (2001). A Multichannel CSMA MAC Protocol with Receiver-Based Channel Selection for Multihop Wireless Networks. IEEE IC3 N, 432–439. doi:10.1109/ICCCN.2001.956301.

  22. Wu, S. L., Lin, C. Y., Tseng, Y. C., & Sheu, J. P. (2000). A new multi-channel MAC protocol with on-demand channel assignment for multi-hop mobile Ad hoc networks (pp. 232–237). Algorithms and Networks: International Symposium on Parallel Architectures.

    Google Scholar 

  23. So, J, & Vaidya, N. H. (2004) Multi-channel MAC for Ad Hoc Networks: Handling Multi-Channel Hidden Terminals using a Single Transceiver. Mobihoc, 222–233. doi:10.1145/989459.989487.

  24. Adya, A., Bahl, P., Padhye, J., Wolman, A., & Zhou, L. (2004). A Multi-Radio Unification Protocol for IEEE 802.11 Wireless Networks. IEEE International Conference on Broadband Networks, 344–354. doi:10.1109/BROADNETS.2004.8.

  25. Bahl, P., Chandra, C., & Dunagan, J. (2004). SSCH: Slotted Seeded Channel Hopping for Capacity Improvement in IEEE 802.11 Ad Hoc Wireless networks. ACM MOBICOM, 216–230. doi:10.1145/1023720.1023742.

  26. Li, P., Guo, S., Yu, S., & Vasilakos, A. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. INFOCOM, 100–108. doi:10.1109/INFCOM.2012.6195456.

  27. Cianfraniet, A., Listanti, M., Polverini, M., & Vasilakos, A. (2012). An OSPF-integrated routing strategy for QoS-aware energy saving in IP backbone networks. IEEE Transactions on Network and Service Management, 9(3), 254–267.

    Article  Google Scholar 

  28. Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  29. Duarte, P. B. F., Fadlullah, Z. M., Vasilakos, A., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30, 119–127.

    Article  Google Scholar 

  30. Chandra, R., & Bahl, P. (2004). MultiNet: Connecting to multiple IEEE 802.11 networks using a single wireless card. IEEE Infocom, 2, 882–893.

    Google Scholar 

  31. Raniwala, A., & Chiueh, T. (2004). Architecture and algorithms for an IEEE 802.11-based multi- channel wireless mesh network. IEEE Infocom, 3, 2223–2234.

    Google Scholar 

  32. Lee, W. C. Y., & Lee, D. J. Y. (1996). In building prediction. Personal, Indoor and Mobile Radio Communications, 3, 771–775.

    Google Scholar 

  33. Mohammed, Y. E., Abdallah, A. S., & Liu, Y. A. (2003). Characterization of indoor penetration loss at ISM band. Asia-Pacific Conference on Environmental Electromagnetic, 25–28. doi:10.1109/CEEM.2003.1282235.

  34. MatLab. Resource document. www.mathworks.com.

  35. Zhang, Y. P., & Hwang, Y. (1998). Theory of the radio-wave propagation in railway tunnels. IEEE Transaction on Vehicular Technology, 47, 1027–1036.

    Article  Google Scholar 

  36. Koksal, C. E., & Balakrishnan, H. (2006). Quality aware routing metrics for time-varying wireless mesh networks. IEEE Journal on Selected Areas in Communications, 24, 1984–1994.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by the Serbian Ministry of Science and Technological Development Number TR320025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marija Malnar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malnar, M., Neskovic, N. & Neskovic, A. Novel power-based routing metrics for multi-channel multi-interface wireless mesh networks. Wireless Netw 20, 41–51 (2014). https://doi.org/10.1007/s11276-013-0587-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0587-8

Keywords

Navigation