Skip to main content
Log in

Cooperative spectrum sensing using amplify-and-forward relaying with partial relay selection in cognitive radio networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Cooperative spectrum sensing has been shown to be an effective approach to improve the detection performance by exploiting the spatial diversity among multiple cognitive nodes. By using the amplify-and-forward relaying with partial relay selection, this paper proposes a novel cooperative spectrum sensing scheme, which provides higher detection performance and is interesting in distributed cognitive radio networks. In the proposed sensing scheme, the “best” cognitive relay by means of partial relay selection technique amplifies and forwards the signals transmitted from the primary user (PU) to the cognitive user (CU). Then the CU detects PU’s states (i.e., presence or absence) via an energy detector. Moreover, the average missed-detection probability of proposed sensing scheme is studied over Nakagami-m fading channels, where m is a positive integer. In particular, the tight closed-form lower bounds of the average missed-detection probability are presented for the convenience of performance evaluation in practice. Finally, numerical results are provided to validate the derived closed-form lower bounds and the influence of the number of cognitive relays on the detection performance is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Federal Communications Commission. (2002). Spectrum policy task force report, FCC 02-155. November 2002.

  2. Broderson, R. W., Wolisz, A., Cabric, D., Mishra, S. M., & Willkomm, D. (2004). CORVUS: A cognitive radio approach for usage of virtual unlicensed spectrum. Berkeley, CA: University of California Berkeley Whitepaper.

  3. Erpek, T., Lofquist, M., & Patton, K. (2007). Spectrum occupancy measurements: Loring Commerce Centre, Limestone, ME, Sept. 18–20, 2007. Shared Spectrum Co. report. Shared Spectrum Co., Vienna, VA.

  4. Mitola, J., & Maguire, G. Q. (1999). Cognitive radios: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  5. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  6. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  7. Mishra, S. M., Sahai, A., & Brodersen, R. W. (2006). Cooperative sensing among cognitive radios. In Proceedings of IEEE international conference on communications, (pp. 1658–1663). Istanbul, Turkey.

  8. Zou, Y., Yao, Y.-D., & Zheng, B. (2012). Cooperative relay techniques for cognitive radio systems: Spectrum sensing and secondary user transmissions. IEEE Communications Magazine, 50(4), 98–103.

    Article  MathSciNet  Google Scholar 

  9. Wang, Z., Qu, D., & Jiang, T. (2013). Novel adaptive collaboration sensing for efficient acquisition of spectrum opportunities in cognitive radio networks. Wireless Networks, 19(2), 247–258.

    Google Scholar 

  10. Chen, C.-Y., Chou, Y.-H., Chao, H.-C., & Lo, C.-H. (2012). Secure centralized spectrum sensing for cognitive radio networks. Wireless Networks, 18(6), 667–677.

    Article  Google Scholar 

  11. Ganesan, G., & Li, Y. (2007). Cooperative spectrum sensing in cognitive radio, part I: Two user networks. IEEE Transactions on Wireless Communications, 6(6), 2204–2213.

    Article  Google Scholar 

  12. Ganesan, G., & Li, Y. (2007). Cooperative spectrum sensing in cognitive radio, part II: Multiuser networks. IEEE Transactions on Wireless Communications, 6(6), 2214–2222.

    Article  Google Scholar 

  13. Atapattu, S., Tellambura, C., & Jiang, H. (2009). Relay based cooperative spectrum sensing in cognitive radio networks. In Proceedings of IEEE global telecommunications conference, GLOBECOM, (pp. 1–5). Honolulu, HI.

  14. Zou, Y.-L., Yao, Y.-D., & Zheng, B.-Y. (2011). A selective-relay based cooperative spectrum sensing scheme without dedicated reporting channels in cognitive radio networks. IEEE Transactions on Wireless Communications, 10(4), 1188–1198.

    Article  Google Scholar 

  15. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  Google Scholar 

  16. Kim, J.-B., & Kim, D. (2009). Comparison of tightly power-constrained performances for opportunistic amplify-and-forward relaying with partial or full channel information. IEEE Communications Letters, 13(2), 100–102.

    Article  Google Scholar 

  17. Krikidis, I., Thompson, J., McLaughlin, S., & Goertz, N. (2008). Amplify-and-forward with partial relay selection. IEEE Communications Letters, 12(4), 235–237.

    Article  Google Scholar 

  18. Gharanjik, A., & Mohamed-pour, K. (2011). Switch-and-stay partial relay selection over Rayleigh fading channels. IET Communications, 5(9), 1199–1203.

    Article  Google Scholar 

  19. Fredj, K. B., & Aissa, S. (2012). Performance of amplify-and-forward systems with partial relay selection under spectrum-sharing constraints. IEEE Transactions on Wireless Communications, 11(2), 500–504.

    Article  Google Scholar 

  20. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of Integrals, Series, and Products (7th ed.). San Diego, CA: Academic.

    Google Scholar 

  21. Digham, F. F., Alouini, M.-S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.

    Article  Google Scholar 

  22. Nuttall, A. H. (1975). Some integrals involving the Q M function. IEEE Transactions on Information Theory, 21(1), 95–96.

    Article  MATH  MathSciNet  Google Scholar 

  23. Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels (2nd ed.). London: Wiley.

  24. Senaratne, D., & Tellambura, C. (2010). Unified exact performance analysis of two-hop amplify-and-forward relaying in Nakagami fading. IEEE Transactions on Vehicular Technology, 59(3), 1529–1534.

    Article  Google Scholar 

  25. Ren, D.-F., Ge, J.-H., & Li, J. (2013). Secondary user selection scheme using adaptive genetic algorithms for cooperative spectrum sensing under correlated shadowing. Wireless Personal Communications, 71(1), 769–788.

    Article  Google Scholar 

  26. Shi, Z., Beard, C., & Mitchell, K. (2012). Competition, cooperation, and optimization in multi-hop CSMA networks with correlated traffic. International Journal of Next-Generation Computing, 3(3), 228–246.

    Google Scholar 

  27. Amarasuriya, G., Ardakani, M., & Tellambura, C. (2010). Output-threshold multiple-relay-selection scheme for cooperative wireless networks. IEEE Transactions on Vehicular Technology, 59(6), 3091–3097.

    Article  Google Scholar 

  28. Yang, Y., Ge, J.-H., & Gao, Y. (2011). Power allocation for two-way opportunistic amplify-and-forward relaying over Nakagami-m channels. IEEE Transactions on Wireless Communications, 10(7), 2063–2068.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China under Grant 2012CB316100, the Innovation Fund of Aerospace under Grant HTCXJJKT-11, the National Natural Science Foundation of China under Grant 61101144, the “111” Project under Grant B08038, and the Nantong Application Research and Technology Program under Grant BK2011017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Defeng Ren.

Appendices

Appendix 1: Proof of Lemma 1

In order to derive the PDF of γ r  = γ P,r γ C,r /(γ P,r  + γ C,r  + 1), we first find the PDF of γ P,r and the CDF of γ C,r . By recalling the definition of γ P,r , its PDF over Nakagami-m fading channels can be given by [23, Eq. (2.21)]

$$f_{\gamma_{P,r}}(\gamma)= \frac{1}{\Upgamma(m_1)} {\left(\frac{m_1}{\upsilon}\right)}^{m_1} \gamma^{m_1 -1}e^{-\frac{m_1}{\upsilon}\gamma} U(\gamma)$$
(18)

where \(\Upgamma(\cdot)\) is the gamma function [20, Eq. (8.310.1)], and \(\Upgamma(m)=(m-1)!\) for \({m\in \mathbb{Z}^+}\). Owing to the “best” cognitive relay \(r = \arg {\mathop{\max}\limits_{k\in \{1,2,\dots,K\}}} \{\gamma_{C,k}\}\), the CDF of γ C,r over independent and identically distributed Nakagami-m fading channels can be calculated as

$$\begin{aligned} F_{\gamma_{C,r}}(\gamma)=& {\left[\int\limits_{0}^{\gamma}\frac{1}{\Upgamma(m_2)}{\left(\frac{m_2}{\omega} \right)}^{m_2} x^{m_2 -1} e^{-\frac{m_2}{\omega}x} dx\right]}^K\\ =& {\left[1-e^{-\frac{m_2}{\omega}\gamma}\sum_{k=0}^{m_2 -1} \frac{1}{k!} {\left(\frac{m_2}{\omega}\gamma\right)}^{k} \right]}^K\\ =& 1+ \sum_{a_0 =1}^{K} \left({\begin{array}{l} K\\ a_0\\ \end{array}}\right)(-1)^{a_0} e^{-\frac{a_0 m_2}{\omega}\gamma} {\left(\sum_{k=0}^{m_2 -1} \frac{1}{k!} {\left(\frac{m_2}{\omega}\gamma\right)}^{k}\right)}^{a_0}. \end{aligned}$$
(19)

When m 2 > 1 and \({m_2 \in \mathbb{Z}^+}\), by making use of the binomial theorem, we have

$$\begin{aligned} &\left({\sum_{k=0}^{m_2 -1} \frac{1}{k!}\left({\frac{m_2}{\omega} \gamma}\right)^{k}}\right)^{a_0}\\ &\quad=\sum_{a_1 =0}^{a_0} \left({\begin{array}{l} a_0\\ a_1\\ \end{array}}\right) \left({\frac{m_2}{\omega} \gamma}\right)^{a_1} \sum_{a_2 =0}^{a_1} \left({\begin{array}{l} a_1\\ a_2\\ \end{array}}\right) \left({\frac{1}{2} \frac{m_2}{\omega}\gamma} \right)^{a_2} \sum_{a_3 =0}^{a_2} \left({\begin{array}{l} a_2\\ a_3\\ \end{array}}\right) \left({\frac{1}{3} \frac{m_2}{\omega}\gamma}\right)^{a_3}\\ &\quad\quad\times{\cdots}\times \sum\limits_{a_{m_2 -1} =0}^{a_{m_2 -2}} \left({\begin{array}{l} a_{m_2 -2}\\ a_{m_2 -1}\\ \end{array}}\right) \left({\frac{1}{m_2 -1} \frac{m_2}{\omega}\gamma}\right)^{a_{m_2 -1}}\\ &\quad=\sum_{a_1 =0}^{a_0} \sum_{a_2 =0}^{a_1} {\cdots} \sum_{a_{m_2 -1} =0}^{a_{m_2 -2}} \left\{{\prod_{b=0}^{m_2 -2} \left({\begin{array}{l} a_b\\ a_{b+1}\\ \end{array}}\right) \frac{1}{(b+1)^{a_{b+1}}}}\right\} \left({\frac{m_2}{\omega}\gamma}\right)^{\sum_{b=1}^{m_2 -1} a_b}. \end{aligned}$$
(20)

Hence, by substituting (20) into (19), we obtain the CDF of γ C,r as follows

$$\begin{aligned} F_{\gamma_{C,r}}(\gamma)&=1+\sum_{a_0 =1}^{K} \sum_{a_1 =0}^{a_0} \sum_{a_2 =0}^{a_1} \cdots \sum_{a_{m_2 -1} =0}^{a_{m_2 -2}} \left({\begin{array}{l} K\\ a_0 \\ \end{array}}\right)(-1)^{a_0}\\ &\quad\times \left\{\prod_{b=0}^{m_2 -2} \left({\begin{array}{l} a_b\\ a_{b+1}\\ \end{array}}\right) \frac{1}{(b+1)^{a_{b+1}}}\right\} e^{-\frac{a_0 m_2}{\omega}\gamma} {\left(\frac{m_2}{\omega}\gamma\right)}^{\sum_{b=1}^{m_2 -1} a_b}. \end{aligned}$$
(21)

From (18) and (21), we can derive the CDF of γ r as

$$\begin{aligned} F_{\gamma_r}(\gamma) &= Pr\left\{\frac{\gamma_{P,r}\gamma_{C,r}}{\gamma_{P,r} +\gamma_{C,r} +1} \leq \gamma\right\}\\ &= \int\limits_{0}^{\gamma} Pr\left\{\gamma_{C,r} \geq \frac{(x+1)\gamma}{x-\gamma}\right\} f_{\gamma_{P,r}}(x) dx + \int\limits_{\gamma}^{\infty} Pr\left\{\gamma_{C,r} \leq \frac{(x+1)\gamma}{x-\gamma}\right\} f_{\gamma_{P,r}}(x) dx\\ &=1+\sum_{a_0 =1}^{K} \sum_{a_1 =0}^{a_0} \sum_{a_2 =0}^{a_1} \cdots \sum_{a_{m_2 -1} =0}^{a_{m_2 -2}} \left({\begin{array}{l} K\\ a_0\\ \end{array}}\right) (-1)^{a_0} \left\{\prod_{b=0}^{m_2 -2} \left({\begin{array}{l} a_b\\ a_{b+1}\\ \end{array}}\right) \frac{1}{(b+1)^{a_{b+1}}}\right\}\\ &\quad\times \underbrace{\int\limits_{\gamma}^{\infty} e^{-\frac{a_0 m_2}{\omega} \frac{(x+1)\gamma}{x-\gamma}} {\left(\frac{m_2}{\omega} \,\frac{(x+1)\gamma}{x-\gamma}\right)}^{\sum_{b=1}^{m_2 -1} a_b} f_{\gamma_{P,r}}(x) dx}_{\varDelta}. \end{aligned}$$
(22)

Let u = x − γ. \(\varDelta\) in (22) can be written as

$$\begin{aligned} \varDelta =& \frac{1}{\Upgamma(m_1)} {\left(\frac{m_1}{\upsilon}\right)}^{m_1} {\left(\frac{m_2}{\omega}\right)}^{\sum_{b=1}^{m_2 -1} a_b} \gamma^{\left(\sum_{b=1}^{m_2 -1} a_b\right) +m_1 -1} e^{-\frac{a_0 m_2 \upsilon + m_1 \omega}{\upsilon\omega}\gamma}\\ &\times \int\limits_{0}^{\infty} {\left(1+ \frac{1+\gamma}{u}\right)}^{\sum_{b=1}^{m_2 -1} a_b} {\left(1+ \frac{u}{\gamma}\right)}^{m_1 -1} e^{-\frac{a_0 m_2 (1+\gamma)\gamma}{\omega u} - \frac{m_1}{\upsilon}u} du. \end{aligned}$$
(23)

With the aid of the binomial theorem, (23) can be rewritten as

$$\begin{aligned} \varDelta =& \frac{1}{\Upgamma(m_1)} {\left(\frac{m_1}{\upsilon} \right)}^{m_1} {\left(\frac{m_2}{\omega}\right)}^{\sum_{b=1}^{m_2 -1} a_b} \gamma^{\left(\sum_{b=1}^{m_2 -1} a_b\right) +m_1 -1} e^{-\frac{a_0 m_2 \upsilon + m_1 \omega}{\upsilon\omega} \gamma}\\ &\times \sum\nolimits_{k_1 =0}^{\sum_{b=1}^{m_2 -1} a_b} \sum_{k_2 =0}^{m_1 -1} \left({\begin{array}{l} \sum\nolimits_{b=1}^{m_2 -1} a_b\\ k_1 \end{array}}\right) \left({\begin{array}{l} m_1 -1\\ k_2\end{array}}\right) (1+\gamma)^{k_1} \gamma^{-k_2}\\ &\times \int\limits_{0}^{\infty} u^{k_2 -k_1} e^{-\frac{a_0 m_2 (1+\gamma)\gamma}{\omega u} - \frac{m_1}{\upsilon}u} du. \end{aligned}$$
(24)

Then, making use of [20, Eq. (3.471.9), 24], the integral term in (24) can be written in closed form as follows:

$$\begin{aligned} &\int\limits_{0}^{\infty} u^{k_2 -k_1} e^{-\frac{a_0 m_2 (1+\gamma)\gamma}{\omega u} - \frac{m_1}{\upsilon}u} du\\ &=2{\left({\frac{a_0 m_2 \upsilon (1+\gamma)\gamma}{m_1 \omega}}\right)}^{\frac{k_2 -k_1 +1}{2}} K_{k_2 -k_1 +1} \left({2\sqrt{\frac{a_0 m_1 m_2 (1+\gamma)\gamma}{\upsilon \omega}}}\right) \end{aligned}$$
(25)

where \(K_v(\cdot)\) is the vth order modified Bessel function of the second kind.

By substituting (24), (25) into (22), we arrive at the CDF of γ r , which can be expressed as

$$\begin{aligned} F_{\gamma_r}(\gamma)=\,&1+\sum_{a_0 =1}^{K} \sum_{a_1 =0}^{a_0} \sum_{a_2 =0}^{a_1} \cdots \sum_{a_{m_2 -1} =0}^{a_{m_2 -2}} \left({\begin{array}{l} K\\ a_0 \\ \end{array}}\right)(-1)^{a_0}\\ &\times \left\{\prod_{b=0}^{m_2 -2} \left({\begin{array}{l} a_b\\ a_{b+1}\\ \end{array}}\right) \frac{1}{(b+1)^{a_{b+1}}}\right\} \times \varDelta \end{aligned}$$
(26)

in which \(\varDelta\) is given by

$$\begin{aligned} \varDelta =& 2 \frac{1}{(m_1 -1)!} {\left(\frac{m_1}{\upsilon} \right)}^{m_1} {\left(\frac{m_2}{\omega}\right)}^{\sum_{b=1}^{m_2 -1} a_b} \sum_{k_1 =0}^{\sum_{b=1}^{m_2 -1} a_b} \sum_{k_2 =0}^{m_1 -1} \left({\begin{array}{l} \sum\nolimits_{b=1}^{m_2 -1} a_b\\ k_1 \end{array}}\right) \\ &\times \left({\begin{array}{l} m_1 -1\\ k_2 \end{array}}\right) \left({\frac{a_0 m_2 \upsilon}{m_1 \omega}}\right)^{\frac{k_2 -k_1 +1}{2}}\gamma^{\left(\sum_{b=1}^{m_2 -1} a_b\right) +m_1 - \frac{k_1 +k_2+1}{2}} (1+\gamma)^{\frac{k_1 +k_2 +1}{2}}\\ &\times e^{-\frac{a_0 m_2 \upsilon +m_1 \omega}{\upsilon \omega}\gamma} K_{k_2 -k_1 +1} \left(2\sqrt{\frac{a_0 m_1 m_2 (1+\gamma)\gamma}{\upsilon\omega}}\right) \end{aligned}$$

where m 2 > 1 and \({m_1, m_2 \in \mathbb{Z}^+}\).

Then, by taking the derivative of (26) with respect to γ, the closed-form PDF expression of γ r over Nakagami-m fading channels is derived as shown in Lemma 1. The proof is completed.

Appendix 2: Proof of Lemma 2

Owing to X = min(γ P,r γ C,r ), the CDF of X is calculated as

$$F_X (x) = 1-\left[1-F_{\gamma_{P,r}}(x)\right] \left[1-F_{\gamma_{C, r}}(x)\right]$$
(27)

where \(F_{\gamma_{P,r}}(x) = 1- e^{-\frac{m_1}{\upsilon}x} \sum_{k=0}^{m_1 -1} \frac{1}{k!} {\left(\frac{m_1}{\upsilon} x\right)}^k\), and \(F_{\gamma_{C,r}}(x)\) is given in (21). Hence, the PDF of X can be derived by taking the derivative of F X (x) with respect to x, and the lemma is proved.

Appendix 3: Proof of Theorem 1

By substituting (13) into (12), we have

$$\begin{aligned} \bar{P}_{m,Nak}^{lb} =& 1- \sum\limits_{a_0 = 1}^{K} \sum\limits_{a_1 = 0}^{a_0} \sum\limits_{a_2 = 0}^{a_1} \cdots \sum\limits_{a_{m_2 - 1} = 0}^{a_{m_2 - 2}} \left({\begin{array}{l} K\\ a_0\\ \end{array}}\right)(-1)^{a_0}\\ &\times\left\{{\prod_{b=0}^{m_2 - 2} \left({\begin{array}{l} a_b\\ a_{b+1} \end{array}}\right) \frac{1}{(b+1)^{a_{b+1}}}}\right\} \left\{-\underbrace{\int_{0}^{\infty} Q(\sqrt{2\gamma}, \sqrt{\lambda}) \Uppsi_1 d\gamma}_{\Upphi_1}\right.\\ &\left.+\underbrace{\int_{0}^{\infty} Q(\sqrt{2\gamma}, \sqrt{\lambda}) \Uppsi_2 d\gamma}_{\Upphi_2} -\underbrace{\int_{0}^{\infty} Q(\sqrt{2 \gamma}, \sqrt{\lambda}) \Uppsi_3 d\gamma}_{\Upphi_3}\right\}. \end{aligned}$$
(28)

Let \(\sqrt{2\gamma} = t, \Upphi_1\) in (28) can be written as

$$\begin{aligned} \Upphi_1 &= a_0 {\left(\frac{m_2}{\omega}\right)}^{\left(\sum_{b =1}^{m_2 -1} a_b\right) +1} \sum_{k=0}^{m_1 -1} \left\{\frac{1}{k!} {\left(\frac{m_1}{\upsilon}\right)}^k \frac{1}{2^{\left(\sum_{b=1}^{m_2 -1} a_b\right) +k}}\right.\\ &\left.\times \int\limits_{0}^{\infty} t^{2\left[\left(\sum_{b=1}^{m_2 -1} a_b\right) +k +1\right] -1} e^{-\frac{a_0 m_2 \upsilon +m_1 \omega}{\upsilon\omega} \times \frac{t^2}{2}} Q(t,\sqrt{\lambda}) dt\right\}. \end{aligned}$$
(29)

With the help of [22, Eq. (9)], the integral term in (29) can be calculated in closed form as follows:

$$\begin{aligned} &\int\limits_{0}^{\infty} t^{2\left[{\left({\sum_{b=1}^{m_2 -1} a_b}\right) +k +1}\right] -1} e^{-\frac{a_0 m_2 \upsilon +m_1 \omega}{\upsilon\omega} \times \frac{t^2}{2}} Q(t,{\sqrt{\lambda}})dt\\ &=2^{\left({\sum_{b=1}^{m_2 -1} a_b}\right) +k} \left({\left({\left({ \sum\nolimits_{b=1}^{m_2 -1} a_b}\right) +k}\right)!}\right) \left({\frac{\upsilon\omega}{a_0 m_2 \upsilon + m_1 \omega}}\right)^{\left({\sum_{b=1}^{m_2 -1} a_b}\right) +k +1}\\ &\times \frac{\upsilon\omega}{a_0 m_2 \upsilon + m_1 \omega +\upsilon\omega} e^{-\frac{\lambda}{2}\, \frac{a_0 m_2 \upsilon +m_1 \omega}{a_0 m_2 \upsilon + m_1 \omega +\upsilon\omega}} \sum_{i_1 =0}^{\left({\sum_{b=1}^{m_2 -1} a_b}\right) +k} \left\{\varepsilon_{i_1}\right.\\ &\left.\times {\left(\frac{a_0 m_2 \upsilon +m_1 \omega}{a_0 m_2 \upsilon +m_1 \omega + \upsilon\omega}\right)}^{i_1} L_{i_1}\left(-\frac{\lambda}{2}\frac{\upsilon\omega}{a_0 m_2 \upsilon +m_1 \omega +\upsilon\omega}\right)\right\} \end{aligned}$$
(30)

where \(\varepsilon_{i_1} = \left\{{\begin{array}{ll} 1,& i_1 <\left({\sum_{b=1}^{m_2 -1}a_b}\right) +k\\ 1+\frac{a_0 m_2 \upsilon + m_1 \omega}{\upsilon\omega}, & i_1 = \left({\sum_{b=1}^{m_2 -1}a_b}\right) +k \end{array}}\right.\), and \(L_k(\cdot)\) denotes the Laguerre polynomial.

Substituting (30) into (29) yields the closed-form expression of \(\Upphi_1\). Similarly, we can obtain closed-form expressions of \(\Upphi_2\) and \(\Upphi_3\). By substituting \(\Upphi_1, \Upphi_2\) and \(\Upphi_3\) into (28), we get the closed-form lower bound of \(\bar{P}_{m,Nak}\) as shown in Theorem 1. The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, D., Ge, J. & Li, J. Cooperative spectrum sensing using amplify-and-forward relaying with partial relay selection in cognitive radio networks. Wireless Netw 20, 861–870 (2014). https://doi.org/10.1007/s11276-013-0646-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0646-1

Keywords

Navigation