Skip to main content
Log in

Analytical analysis of applying packet fragmentation mechanism on IEEE 802.11b DCF network in non ideal channel with infinite load conditions

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The analytical modeling and performance analysis of the 802.11 network in all its various extensions (802.11b, 802.11a, 802.11g, 802.11e, 802.11n, etc.) have already been widely explored over the past years. However, the packet fragmentation mechanism (PFM), which is proposed by the IEEE work group to reduce the impact of bit error rate (BER) on the packet error rate (PER), has not been considered in the analytical models proposed in the literature. Yet, the PFM constitutes a key parameter to achieve the best performances of 802.11 networks. In this paper, we extend the Bianchi’s Markov chain model with the PFM and the PER. Then, we analyze the performance improvement level achieved with the PFM in an IEEE 802.11 network under the impact of BER and packet length. The proposed analysis has been applied on the basic access method of 802.11b network in saturated traffic conditions. So, we have analyzed the throughput and the mean response time of the 802.11 network. The obtained theoretical results are validated by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. IEEE (1999). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11.

  2. IEEE (2007). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std 802.11.

  3. Giustiniano, D., Malone, D., Leith, D. J., & Papagiannaki, K. (2010). Measuring transmission opportunities in 802.11 links. IEEE/ACM Transactions on Networking, 18(5), 1516–1529.

    Article  Google Scholar 

  4. Yun, J. H., & Seo, S. W. (2007). Novel collision detection scheme and its applications for IEEE 802.11 wireless LANs. Computer Communications, 30, 1350–1366.

    Article  Google Scholar 

  5. Willing, A., Kubisch, M., Hoene, C., & Wolisz, A. (2002). Measurements of a wireless link in an industrial environment using an IEEE 802.11 compliant physical layer. IEEE Transactions on Industrial Electronics, 43(6), 1265–1282.

    Article  Google Scholar 

  6. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 districuted coordination function. IEEE Journal on Selected Areas in Communications, 18, 535–547.

    Article  Google Scholar 

  7. Awerbuch, B., Holmer, D., & Rubens, H. (2006). The medium time metric: High throughput route selection in multi-rate ad hoc wireless networks. Mobile Networks and Applications, 11, 253–266.

    Article  Google Scholar 

  8. Malone, D., Duffy, K., & Leith, D. (2007). Modeling the 802.11 distributed coordination function in nonsaturated heterogeneous conditions. IEEE/ACM Transactions on Networking, 15(1), 159–171.

    Article  Google Scholar 

  9. Zaki, A. N., & El Hadidi, M. T. (2008). Performance evaluation of IEEE 802.11-based wireless LANs under finite-load conditions. International Journal of Electronics and Communications, 62, 327–337.

    Article  Google Scholar 

  10. Alsabbagh, H. M., Chen, J., & Xu, Y. (2008). Influence of the limited retransmission on the performance of WLANs using error-prone channel. International Journal of Communications, Networks and System Sciences, 1, 49–54.

    Article  Google Scholar 

  11. Wang, C. Y., & Wei, H. Y. (2009). IEEE 802.11n MAC enhancement and performance evaluation. Mobile Networks and Applications, 14, 760–771.

    Article  Google Scholar 

  12. Mahmood, M. H., Chang, C., Jung, D., & Mao, Z. (2010). Throughput behavior of link adaptive 802.11 DCF with MUD capable access node. International Journal of Electronics and Communications, 64, 1031–1041.

    Article  Google Scholar 

  13. Hung, F. Y., & Marsic, I. (2010). Performance analysis of the IEEE 802.11 DCF in the presence of the hidden stations. Computer Networks, 54, 2674–2687.

    Article  MATH  Google Scholar 

  14. Lopez Aguilera, E., Casademont, J., & Cotrina, J. (2010). Propagation delay influence in IEEE 802.11 outdoor networks. Wireless Networks, 16, 1123–1142.

    Article  Google Scholar 

  15. Naor, Z. (2010). LAMA/CA: A load-adaptive MAC protocol for short packets. Mobile Networks and Applications, 15, 639–651.

    Article  Google Scholar 

  16. Li, T., Leith, D. J., Badarla, V., Malone, D., & Cao, Q. (2011). Achieving end-to-end fairness in 802.11e based wireless multi-hop mesh networks without coordination. Mobile Networks and Applications, 16, 17–34.

    Article  Google Scholar 

  17. Heereman, F., Joseph, W., Tanghe, E., Plets, D., Verloock, L., & Martens, L. (2012). Path loss model and prediction of range, power and throughput for 802.11n in large conference rooms. International Journal of Electronics and Communications, 66, 561–568.

    Article  Google Scholar 

  18. Zhu, D. B., & Choi, B. D. (2012). Performance analysis of CSMA in an unslotted cognitive radio network with licensed channels and unlicensed channels. Journal on Wireless Communications and Networking, 12, 1–7.

    Google Scholar 

  19. Chatzimisios, P., Xiao, Y., Tinnirello, I., Granelli, F., & Elmallah, E. S. (2009). Recent advances in IEEE 802.11 WLANs: Protocols, solutions and future directions. Mobile Networks and Applications, 14, 693–696.

    Article  Google Scholar 

  20. IEEE (2005). Part 11: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium Access Control (MAC) Quality of Service (QoS) Enhancements. IEEE Std 802.11e.

  21. Weinmiller, J., Schlager, M., Festag, A., & Wolisz, A. (1997). Performance study of access control in wireless LANs—IEEE 802.11 DFWMAC and ETSI RES 10 Hiperlan. Mobile Networks and Applications, 2, 55–67.

    Article  Google Scholar 

  22. Ci, S., & Sharif, H. (2000). Adaptive approaches to enhance throughput of IEEE 802.11 wireless LAN with bursty channel. In Proceedings of 25th annual IEEE conference on local computer networks (pp. 44–45).

  23. Lindgren, A., Almquist, A., & Schelen, O. (2003). Quality of service schemes for IEEE 802.11 wireless LANs—An evaluation. Mobile Networks and Applications, 8, 223–235.

    Article  Google Scholar 

  24. Borgia, E., Conti, M., & Gregori, E. (2005). IEEE 802.11b ad hoc networks: performance measurements. Cluster Computing, 8, 135–145.

    Article  Google Scholar 

  25. Rajan, D., & Poellabauer C. (2007). Adaptive fragmentation for latency control and energy management in wireless real-time environments. In International conference on wireless algorithms, systems and applications (pp. 158–168).

  26. Kurth, M., Hermann, U., Zubow, A., & Redlich, J. P. (2009). Network coding for bit error recovery in IEEE 802.11 mesh networks. IEEE International Conference on Communications, 1–6.

  27. Skordoulis, D., Ni, Q., Chen, H. H., Stephens, A. P., Liu, C., & Jamalipour, A. (2008). IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs. IEEE Wireless Communications Magazine, 15(1), 40–47.

    Article  Google Scholar 

  28. Zhou, T., Sharif, H., Hempel, M., Mahasukhon, P., Wang, W., & Chen, H. H. (2009). Performance study of a mobile multi-hop 802.11a/b railway networks using passive measurement. Mobile Networks and Applications, 14, 782–797.

    Article  Google Scholar 

  29. Judd, G., & Steenkiste, P. (2010). Characterizing 802.11 wireless link behavior. Wireless Networks, 16, 167–182.

    Article  Google Scholar 

  30. Sweedy, A. M., Semeia, A. I., Sayed, S. Y., & Konber, A. H. (2010). The effect of frame length, fragmentation and RTS/CTS mechanism on IEEE 802.11 MAC performance. In 10th international conference on intelligent systems design and applications (pp. 1338–1344).

  31. Pocta, P., Bilsak, M., & Rousekova, J. (2010). Impact of fragmentation threshold tuning on performance of voice service and background traffic in IEEE 802.11b WLANs. In 20th international conference on radioelektronika (pp. 1–4).

  32. Choi, N., Seok, Y., Kwon, T., & Choi, Y. (2011). Multicasting multimedia streams in IEEE 802.11 networks: A focus on reliability and rate adaptation. Wireless Networks, 17, 119–131.

    Article  Google Scholar 

  33. Castignani, G., Blanc, A., Lampropulos, A., & Monavont N. (2012). Urban 802.11 community networks for mobile users: Current deployments and prospectives. Mobile Networks and Applications. doi:10.1007/s11036-012-0402-2.

  34. Cardoso, K. V., & De Rezende, J. F. (2012). Increasing throughput in dense 802.11 networks by automatic rate adaptation improvement. Wireless Networks, 18, 95–112.

    Article  Google Scholar 

  35. Lyakhov, A., & Vishnevsky, V. M. (2004). Packet fragmentation in wi-fi ad hoc networks with correlated channel failures. In IEEE international conference on mobile ad hoc and sensor systems (pp. 204–213).

  36. Xi, Y., Wei, J. B., Zhuang, Z. W., & Kim, B. S. (2006). Performance evaluation, improvement and channel adaptive strategy for IEEE 802.11 fragmentation mechanism. In Proceedings of 11th IEEE symposium on computers and communications (pp. 142–148).

  37. Kim, S., Kim, J., Park, S. K., Choi, S., Lee, J., & Jung, H. (2006). Reachability and goodput enhancement via fragmentation in public IEEE 802.11b WLAN. In Asia-Pacific conference on communications (pp. 1–6).

  38. Fallah, Y. P., El Housseini, S., & Alnuweiri, H. (2008). A generalized saturation throughput analysis for IEEE 802.11e contention-based MAC. Wireless Personal Communications, 47, 235–245.

    Article  Google Scholar 

  39. Chen, W. T. (2008). An effective medium contention method to improve the performance of IEEE 802.11. Wireless Networks, 14, 769–776.

    Article  Google Scholar 

  40. Bayraktaroglu, E., King, C., Liu, X., Noubir, G., Rajaraman, R., & Thapa, B. (2011). Performance of IEEE 802.11 under jamming. Mobile Networks and Applications. doi:10.1007/s11036-011-0340-4.

  41. Feng, K. T., Huang, Y. Z., & Lin, J. S. (2011). Design of MAC-defined aggregation ARQ schemes for IEEE 802.11n networks. Wireless Networks, 17, 685–699.

    Article  Google Scholar 

  42. Keene, S. M., & Carruthers, J. B. (2012). Collision localization for IEEE 802.11 wireless LANs. Wireless Personal Communications, 63, 45–63.

    Article  Google Scholar 

  43. Jeong, J., Choi, J., Choi, S., & Kim, C. K. (2012). Resolving intra-class unfairness in 802.11 EDCA. Wireless Personal Communications, 63, 431–445.

    Article  Google Scholar 

  44. Park, S., Chang, Y., & Copeland, J. A. (2012). Throughput enhancement of MANETs: Packet fragmentation with hidden stations and BERs. IEEE Consumer Communications and Networking Conference, 188–193.

  45. Karthikeyani, V., & Thiruvenkadam, T. (2013). Packet size based performance analysis of IEEE 802.11 WLAN comprising virtual server arrays. In International conference on pattern recognition informatics and medical engineering (pp. 43–48).

  46. Vishnevsky, V. M., & Lyakhov, A. I. (2002). IEEE 802.11 wireless LAN: Saturation throughput analysis with seizing effect consideration. Cluster Computing, 5, 133–144.

    Article  Google Scholar 

  47. Lyakhov, A., & Vishnevsky, V. (2005). Comparative study of 802.11 DCF and its modification in the presence of noise. Wireless Networks, 11, 729–740.

    Article  Google Scholar 

  48. Pham, P. P. (2005). Comprehensive analysis of the IEEE 802.11. Mobile Networks and Applications, 10, 691–703.

    Article  Google Scholar 

  49. Ni, Q., Li, T., Turletti, T., & Xiao, Y. (2005). Saturation throughput analysis of error-prone 802.11 wireless networks. Journal of Wireless Communications and Mobile Computing, 5(8), 945–956.

    Article  Google Scholar 

  50. Kim, B. S., Fang, Y., Wong, T. F., & Kwon, Y. (2005). Throughput enhancement through dynamic fragmentation in wireless LANs. IEEE Transactions on Vehicular Technology, 54(4), 1415–1425.

    Article  Google Scholar 

  51. Li, T., Ni, Q., & Xiao, Y. (2006). Investigation of the block ACK scheme in wireless ad-hoc networks. Journal of Wireless Communications and Mobile Computing, 6(6), 877–888.

    Article  Google Scholar 

  52. Smadi, M. N., & Szabados, B. (2006). Error-recovery service for the IEEE 802.11b protocol. IEEE Transactions on Instrumentation and Measurement, 55(4), 1377–1382.

    Article  Google Scholar 

  53. Hneiti, W., & Ajlouni, N. (2006). Performance enhancement of wireless local area networks. Information and Communication Technologies, 2, 2400–2404.

    Google Scholar 

  54. Chang, Y., Lee, C. P., Kwon, B., & Copeland, J. A. (2007). Dynamic optimal fragmentation for goodput enhancement in WLANs. In 3rd international conference on testbeds and research infrastructure for the development of networks and communities (pp. 1–9).

  55. Szczypiorski, K., & Lubacz, J. (2008). Saturation throughput analysis of IEEE 802.11g (ERP-OFDM) networks. Telecommunication Systems, 38, 45–52.

    Article  Google Scholar 

  56. Bae, Y. H., Lyakhov, A. I., Vishnevsky, V. M., Kim, K. J., & Choi, B. D. (2008). Matrix method to study IEEE 802.11 network. Automation and Remote Control, 69(3), 529–543.

    Article  MATH  Google Scholar 

  57. Li, Y., Wang, C., long, K., & Zhao, W. (2008). Modeling channel access delay and jitter of IEEE 802.11 DCF. Wireless Personal Communications, 47, 417–440.

    Article  Google Scholar 

  58. Lin Fang, D., Yan Tai, S., Hai Ming, C., & Mao De, M. (2008). Packet delay analysis on IEEE 802.11 DCF under finite load traffic in multi-hop ad hoc networks. Science in China Series F: Information Sciences, 51(4), 408–416.

    MathSciNet  Google Scholar 

  59. Zheng, F., & Nelson, J. (2008). Cross-layer adaptive design for the frame length of IEEE 802.11 networks. In 6th international symposium on modeling and optimization in mobile, ad hoc and wireless networks and workshops (pp. 437–442).

  60. Bykowski, M., Kowalik, K., Keegan, B., & Davis, M. (2008). Throughput enhancement through combined fragmentation and rate method in IEEE 802.11b WLANs. In Workshop on wireless broadband access for communities and rural developing regions, Karlstad, Sweden.

  61. Peng, X. Y., Jiang, L. T., & Xu, G. Z. (2009). Saturation throughput analysis of RTS/CTS scheme in an error-prone WLAN channel. Journal of Zhejiang University Science A, 10(12), 1714–1719.

    Article  MATH  Google Scholar 

  62. Raptis, P., Vitsas, V., & Paparrizos, K. (2009). Packet delay metrics for IEEE 802.11 distributed coordination function. Mobile Networks and Applications, 14, 772–781.

    Article  Google Scholar 

  63. Li, T., Ni, Q., Malone, D., Leith, D., Xiao, Y., & Turletti, T. (2009). Aggregation with fragmentation retransmission for very high-speed wireless LANs. IEEE/ACM Transactions on Networking, 17(2), 591–604.

    Article  Google Scholar 

  64. Senthilkumar, D., & Krishnan, A. (2010). Nonsaturation throughput enhancement of IEEE 802.11b distributed coordination function for heterogeneous traffic under noisy environment. International Journal of Automation and Computing, 7(1), 95–104.

    Article  Google Scholar 

  65. Senthilkumar, D., & Krishnan, A. (2010). Throughput analysis of IEEE 802.11 multirate WLANs with collision aware rate adaptation algorithm. International Journal of Automation and Computing, 7(4), 571–577.

    Article  Google Scholar 

  66. Prakash, G., & Thangaraj, P. (2011). Non-saturation throughput analysis of IEEE 802.11 distributed coordination function. European Journal of Scientific Research, 51(2), 157–167.

    Google Scholar 

  67. Kumar, P., & Krishnan, A. (2011). Throughput analysis of the IEEE 802.11 distributed coordination function considering erroneous channel and capture effects. International Journal of Automation and Computing, 8(2), 236–243.

    Article  Google Scholar 

  68. Senthilkumar, D., & Krishnan, A. (2012). Enhancement to IEEE 802.11 distributed coordination function to reduce packet retransmissions under imperfect channel conditions. Wireless Personal Communications, 65, 929–953.

    Article  Google Scholar 

  69. Bouallouche Medjkoune, L., & Aissani, D. (2006). Performance analysis approximation in a queueing system of Type M/G/1. International Journal Mathematical Methods of Operation Research, 63(2), 341–356.

    Article  MATH  MathSciNet  Google Scholar 

  70. Lipsky, L. (2009). M/G/1 queue (pp. 185–286). Queueing theory. doi:10.1007/978-0-387-49706-8-4, Springer Science+Business Media, LLC.

  71. IEEE (2009). Part 11: Wireless medium access control (MAC) and physical layer (PHY) specifications: Enhancements for higher throughput. IEEE Std 802.11n.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohand Yazid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazid, M., Bouallouche-Medjkoune, L., Aïssani, D. et al. Analytical analysis of applying packet fragmentation mechanism on IEEE 802.11b DCF network in non ideal channel with infinite load conditions. Wireless Netw 20, 917–934 (2014). https://doi.org/10.1007/s11276-013-0653-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-013-0653-2

Keywords

Navigation