Skip to main content

Advertisement

Log in

On the performance of heterogeneous MANETs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Recent decades have witnessed the birth of major applications of wireless communication technology, further supported by the increasing capabilities of portable devices, low cost and ubiquitous presence. Despite radio technology diversity, a great deal of existing research focuses on a single and isolated wireless technology at a time, where homogeneous elements are identified by IP addresses. This work presents a heterogeneous technology routing (HTR) Framework, targeted towards scenarios where the heterogeneity of devices and networking technologies is present. Our contribution is many fold. It consists of a framework, which encompasses a process for bootstrapping networks, a routing protocol capable of dealing with multiple network interfaces, and a tuning with multipath extensions. We evaluate the performance of the bootstrap, routing and multipath mechanisms by way of simulation and an actual testbed implementation. The multipath evaluation simulates HTR networks with WiMAX, 3GPP LTE and Wi-Fi support. Results show that our proposal can effectively improve the data delivery ratio for ad-hoc networks and that it reduces the end-to-end delay without major impact on network energy consumption. As part of HTR tuning, we investigate next the impacts of tuning the HELLO refresh interval timer on route convergence and its subsequent energy consumption reduction during this phase. We also compare our tuned HTR with the widely used optimized link state routing protocol. Results show that varying the HELLO refresh interval can improve the convergence time and reduce the energy consumption without major impact on network behavior. Our proposal also includes a new distributed address allocation algorithm, namely, the dynamic node configuration protocol (DNCP). This paper conducts a comparative analysis between the Prime, Prophet and the DNCP schemes using static and dynamic topologies in terms of network setup time, energy consumption and control message overhead. Results show that the DNCP had a lower battery power consumption and less control message overhead while it slightly suffers with regard to setup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. Boulicault, N., Chelius, G., & Fleury, E. (2006). Ana4: a 2.5 framework for deploying real multi-hop ad hoc and mesh networks. Ad Hoc & Sensor Wireless Networks: an International Journal (AHSWN), 2, 1–24.

    Google Scholar 

  2. Untz, V. et al. (2004). Lilith: An interconnection architecture based on label switching for spontaneous edge networks. In International Conference on Mobile and Ubiquitous Systems (MOBIQUITOUS), pp. 146–151.

  3. Jacinto, B. et al. (2010). 3D routing: a protocol for emergency scenarios. In Proceedings of the 6th International Wireless Communications and Mobile Computing Conference IWCMC’2010 (pp. 519–523).

  4. Schmidt, R. et al. (2009). An autonomous addressing mechanism as support for auto-management in dynamic networks. In 6th IEEE/IFIP Latin American Network Operations and Management Symposium (LANOMS) (pp. 1–12).

  5. Aschoff, R., Souto, E., Sadok, D., & Kelner, J. (2009). Network address allocation method. International Patent number WO2010083887-A1.

  6. Hsu, Y.-Y., & Tseng, C.-C. (2005). Prime DHCP: A prime numbering address allocation mechanism for MANETs. IEEE Communication Letters, 9, 712–714.

  7. Conti, M., & Giordano, S. (2007). Multihop ad hoc networking: The reality. IEEE Communications Magazine, 45, 88–95.

    Article  Google Scholar 

  8. Bluetooth SIG. (2002). Specification of the Bluetooth system. Specification Version 1.1.

  9. ISO/IEC 8802-11; ANSI/IEEE Std 802.11, Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.

  10. ZigBee Alliance (2005). ZigBee Specifications, version 1.0, April 2005.

  11. Ghosh, A., et al. (2005). Broadband wireless access with WiMAX/802.16: Current performance benchmarks and future potential. IEEE Communication Magazine, 43, 129–136.

    Article  Google Scholar 

  12. Clausen, T. & Jacquet, P. (2003). Optimized link state routing protocol (OLSR). RFC 3626, October 2003.

  13. Rosen, E., Viswanathan, A. & Callon, R. (2001). Multiprotocol label switching architecture. RFC 3031.

  14. Droms, R. (March 1997). Dynamic host configuration protocol. RFC 2131.

  15. Clausen, T. & Jacquet, P. (2003). RFC 3626—Optimized Link State Routing Protocol (OLSR). IETF, 01-Oct-2003.

  16. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.

    Article  MATH  MathSciNet  Google Scholar 

  17. Chang, J. & Tassiulas, L. (2000). Energy conserving routing in wireless ad hoc networks. IEEE INFOCOM (pp. 22–31).

  18. Hsu, C.-H. & Kremer, U. (1998). IPERF: A framework for automatic construction of performance prediction models. In Proceedings of the Workshop on Profile and Feedback-Directed Compilation (PFDC’98).

  19. Iperf v2.0.2. http://dast.nlanr.net/Projects/Iperf/.

  20. Devi, R., & Rao, S. (2012). QoS enhanced hybrid multipath routing protocol for mobile adhoc networks. International Journal of Distributed and Parallel systems, 3(6), 89–105.

    Article  Google Scholar 

  21. Yi, J., Adnane, A., David, S., & Parrein, B. (2011). Multipath optimized link state routing for mobile ad hoc networks. Ad Hoc Networks, 9(1), 28–47.

    Article  Google Scholar 

  22. Tarique, M., Tepe, K. E., Adibi, S., & Erfani, S. (2009). Survey of multipath routing protocols for mobile ad hoc networks. Journal of Network and Computer Applications, 32(6), 1125–1143.

    Article  Google Scholar 

  23. Mueller, S., Tsang, R., & Ghosal, D. (2004). Multipath routing in mobile ad hoc networks: Issues and challenges. Performance Tools and Applications to Networked Systems, Lecture Notes in Computer Science, 2965, 209–234.

    Article  Google Scholar 

  24. Crowcroft, J. (2007). Mobile ad-hoc intern-domain networking. In Annual Conference of ITA.

  25. Chau, C.-K., Crowcroft, J., Lee, K.-W., & Wong, S. H. Y. (2008). Inter-domain routing for mobile ad hoc networks. In Proceedings of the 3rd International Workshop on Mobility in the Evolving Internet Architecture (MobiArch ’08) (pp. 61–66). New York, NY: ACM.

  26. Schmid, S., Eggert, L., Brunner, M., & Quittek, J. (2005). Towards autonomous network domains. In Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies (pp. 2847–2852).

  27. Marina, M. K. & Das, S. R. (2001). On-demand multipath distance vector routing in ad hoc networks. In Proceedings Ninth International Conference on Network Protocols. ICNP 2001 (pp. 14–23).

  28. Perkins, C., Royer, E., & Das, S. (2003). RFC 3561—ad hoc on-demand distance vector (AODV) Routing. IETF.

  29. Leung, R., Poon, E. & Chan, A.-L. C. (2001). MP-DSR: A QoS-aware multi-path dynamic source routing protocol for wireless ad-hoc networks. In Proceedings LCN 2001. 26th Annual IEEE Conference on Local Computer Networks (pp. 132–141).

  30. Maltz, D., Hu, Y., & Johnson, D. (2007) RFC 4728—The dynamic source routing protocol (DSR) for mobile ad hoc networks for IPv4. IETF.

  31. Yi, J., Adnane, A., David, S., & Parrein, B. (2011). Multipath optimized link state routing for mobile ad hoc networks. Ad Hoc Networks, 9(1), 28–47.

    Article  Google Scholar 

  32. Lee, S.-J. & Gerla, M. (2001). Split multipath routing with maximally disjoint paths in ad hoc networks. In ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240), vol. 10, (pp. 3201–3205).

  33. Panasonic. (2007). Panasonic CGR18650DA (LITHIUM ION BATTERIES: INDIVIDUAL DATA SHEET).

  34. Texas Instruments (2004). CC2420 2.4 GHz IEEE 802.15. 4/ZigBee-ready RF Transceiver.

  35. Atmel (2007). Atmel AT86RF535B (3.5 Ghz WiMAX Transceiver).

  36. Infineon (2009). Infineon BGA777L7 Data Sheet.

  37. Huang, Y., Bhatti, S. & Parker, D. (2006). Tuning OLSR. In 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio Communications, 2006 (pp. 1–5).

  38. Suganthi, P., & Tamilarasi, A. (2011). Performance of OLSR routing protocol under different route refresh intervals in ad hoc networks. International Journal on Computer Science and Engineering, 3(1), 133–137.

    Google Scholar 

  39. Kunz, T., & Alhalimi, R. (2010). Energy-efficient proactive routing in MANET: Energy metrics accuracy. Ad Hoc Networks, 8(7), 755–766.

    Article  Google Scholar 

  40. Villanueva-Pena, P. E., Kunz, T., & Dhakal, P. (2006). Extending network knowledge: making OLSR a quality of service conductive protocol. In Proceedings of the International Conference on Communications and Mobile Computing (pp. 103–108).

  41. Kunz, T. & Alhalimi, R. (2007). Load-balanced routing in wireless networks: State information accuracy using OLSR. In Third IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob 2007) (pp. 83–83).

  42. Gomez, C., Garcia, D., & Paradells, J. (2005). Improving performance of a real ad hoc network by tuning OLSR parameters. In 10th IEEE Symposium on Computers and Communications (ISCC’05) (pp. 16–21).

  43. Gomez, C., Garcia, D., & Paradells, J. (2005). An OLSR parameter based study of the performance of real ad-hoc network environments. Wireless Conference 2005Next Generation Wireless and Mobile Communications and Services (European Wireless), 11th European (pp. 1–6).

  44. Hosek, J. (2011). Performance analysis of MANET routing protocols OLSR and AODV. ElektrorevueEng, 2(3), 22–27.

    Google Scholar 

  45. Renold, A. P., Venkatalakshmi, B., & VijayaKumar, S. (2011) Tuning parameters of AODV routing protocol for improved performance in volcano monitoring. In: 2011 3rd International Conference on Electronics Computer Technology (pp. 373–376).

  46. Ji, P., Ge, Z., Kurose, J., & Towsley, D. (2007). A comparison of hard-state and soft-state signaling protocols. IEEE/ACM Transactions on Networking, 15(2), 281–294.

    Article  Google Scholar 

  47. Moore, N. (2006). Optimistic duplicate address detection (DAD) for IPv6, Request for comments (RFC) 4429.

  48. Perkins, C., Wakikawa, R., Belding-Royer, J. M. E. & Sun, Y. (2001). IP address autoconfiguration for ad hoc networks. IETF Network working group.

  49. Choi, N. et al. (2005). Random and linear address allocation for mobile ad hoc networks. IEEE Wireless Communications and Networking Conference (WCNC’05) (pp. 2231).

  50. Vaidya, N. (2002). Weak duplicate address detection in mobile ad hoc networks. In: Proceedings of ACM MobiHoc, June 2002.

  51. Thomson, S. & Narten, T. (1998). IPv6 Stateless Address Autoconfiguration. IETF Network Working group—RFC 2462, December 1998.

  52. Aboba, B., Cheshire, S., & Guttman, E. (2004). Dynamic configuration of ipv4 link-local addresses. In IETF Internet draft, July 2004, Work in Progress, http://files.zeroconf.org/draft-ietf-zeroconfipv4-linklocal.txt, July 2004.

  53. Thomson, S., & Norten, T. (1998). Ipv6 stateless address autoconfiguration. RFC 2462, December 1998.

  54. Haro, F. (2006). IP address assignment schemes for mobile ad hoc networks, Report for the University of Catalunya.

  55. Finlayson, R., Mann, T., Mogul, J., and Theimer, M. (1984). A reverse address resolution protocol.RFC 903, June 1984.

  56. Croft, B., & Gilmore, J. (1985). BOOTSTRAP PROTOCOL (BOOTP). RFC 951, September 1985.

  57. Droms, R. (1997). Dynamic host configuration protocol, RFC 2131, March 1997.

  58. Zhou, H., Ni, L. M., & Mutka, M. W. (2003). Prophet address allocation for large scale MANETs. In Proceedings of 22nd Annual Joint Conference of IEEE Computer and Communication Societies (INFOCOM’03), Vol. 2 (pp. 1304–1311).

  59. Misra (2006). Unique prime factorization theorem.

  60. Sun, Y. & Belding-Royer, E. M. (2003). Dynamic address configuration in mobile ad hoc networks. UCSB technology report, 2003–2011.

  61. Weniger, K. (2005). PACMAN: Passive autoconfiguration for mobile ad hoc networks. IEEE Journal on Selected Areas in Communications, 23(3), 507–519.

    Article  Google Scholar 

  62. Nesargi, S., Prakash, R. (2002). Manetconf: Configuration of hosts in a mobile ad hoc network, INFOCOM, 2002 (pp. 1059–1068).

  63. Aschoff, R. R., Souto, E., Sadok, D. H., & Kelner, J. Network address allocation method. In International Patent Application Number PCT/BR2009/000215, Filled on July 20 2009. 004.

  64. The ns-3 network simulator—Class list. (2010). http://www.nsnam.org/doxygen-release/annotated.html.

  65. Phillips, C., Sicker, D., & Grunwald, D. (2013). A survey of wireless path loss prediction and coverage mapping methods. IEEE Communications Surveys & Tutorials, 15(1), 255–270.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel F. Hadj Sadok.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hadj Sadok, D.F., Rodrigues, T.G., Amorim, R.D.M. et al. On the performance of heterogeneous MANETs. Wireless Netw 21, 139–160 (2015). https://doi.org/10.1007/s11276-014-0777-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0777-z

Keywords

Navigation