Skip to main content
Log in

Performance analysis of V2V dynamic anchor position-based routing protocols

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Recently, vehicular ad hoc networks (VANETs) have received more attention in both academic and industry settings. One of the challenging issues in this domain is routing protocols. VANETs’ unique characteristics such as high mobility with the constraint of road topology, fast network topology changes, frequently disconnected networks, and time-sensitive data exchange makes it difficult to design an efficient routing protocol for routing data in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure communications. Designing routing protocols for V2V commutations are more challenging due to the absence of infrastructure nodes in the communication procedure. They become even more challenging, when they get benefit from dynamic anchor computation method in which the anchor nodes (junctions or basic nodes for routing) are dynamic in their routing procedure. Position-based routing protocols have been proven to be superior and outperform the other protocols since there is no requirement to establish and save a route between source and destination during the routing process which is suitable for dynamic nature of vehicular networks. In this paper, the performance of V2V dynamic anchor position-based routing protocols, which are proposed for the most challenging condition of packet routing in VANET, are investigated and evaluated under two different scenarios (i.e. various vehicle densities and velocities) through NS-2. The obtained results are then illustrated based on average delay, packet delivery ratio and routing overhead as routing performance indicators. Our objective is to provide a quantitative assessment of the applicability of these protocols in different vehicular scenarios. The comparison provided in this paper makes the research contribution of this survey paper quite higher than a regular survey paper only with explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jalooli, A., Shaghaghi, E., Jabbarpour, M.R., Md Noor, R., Yeo, H., & Jung, J.J. (2014). Intelligent advisory speed limit dedication in highway using VANET. The Scientific World Journal, 2014, 629412.

  2. Jalooli, A., Hussin, N., Noor, R.M, & Jung, J.J. (2014). Public alerts on landslide natural disaster using vehicular communications. International Journal of Distributed Sensor Networks. doi:10.1155/2014/969864.

  3. Vasilakos, A.V. (2008). Special issue: Ambient Intelligence. Information Sciences, 178(3), 585–587.

  4. Sattari, M. R. J., Noor, R. M., & Ghahremani, S. (2013). Dynamic congestion control algorithm for vehicular ad hoc networks. International Journal of Software Engineering and Its Applications, 7(3), 95–108.

    Google Scholar 

  5. Cheng, X., Wang, C.-X., Laurenson, D. I., Salous, S., & Vasilakos, A. V. (2009). An adaptive geometry-based stochastic model for non-isotropic MIMO mobile-to-mobile channels. IEEE Transactions on Wireless Communications, 8(9), 4824–4835.

    Article  Google Scholar 

  6. Li, M., Li, Z., & Vasilakos, A.V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

  7. Cheng, X., Wang, C.X., Laurenson, D.I., Salous, S., Vasilakos, A.V. (2011). New deterministic and stochastic simulation models for non isotropic scattering mobile to mobile Rayleigh fading channels. Wireless Communications and Mobile Computing, 11(7), 829–842.

  8. Jiang, D., & Delgrossi, L. (2008). IEEE 802.11 p: Towards an international standard for wireless access in vehicular environments. In IEEE Vehicular Technology Conference (pp. 2036–2040). VTC Spring 2008.

  9. Lloret, J., Canovas, A., Catalá, A., & Garcia, M. (2013). Group-based protocol and mobility model for VANETs to offer internet access. Journal of Network and Computer Applications, 36(3), 1027–1038.

    Article  Google Scholar 

  10. Whaiduzzaman, M., Sookhak, M., Gani, A., Buyya, R. (2014). A survey on vehicular cloud computing. Journal of Network and Computer Applications, 40, 325–344.

  11. Bilal, S. M., Khan, S. U., Madani, S. A., Nazir, B., Othman, M. (2014). Road oriented traffic information system for vehicular ad hoc networks. Wireless Personal Communications, 77(4), 2497–2515.

  12. Cho, K.-H., & Ryu, M.-W. (2012). A survey of greedy routing protocols for vehicular ad hoc networks. Smart CR, 2(2), 125–137.

    Google Scholar 

  13. Sharef, B. T., Alsaqour, R. A., & Ismail, M. (2014). Vehicular communication ad hoc routing protocols: A survey. Journal of Network and Computer Applications, 40, 363–396.

    Article  Google Scholar 

  14. Ghafoor, K. Z., Mohammed, M. A., Lloret, J., Bakar, K. A., & Zainuddin, Z. M. (2013). Routing protocols in vehicular ad hoc networks: Survey and research challenges. Network Protocols and Algorithms, 5(4), 39–83.

    Article  Google Scholar 

  15. Perkins, C.E., & Royer, E.M. (1999). Ad hoc on-demand distance vector routing. In Proceeding of Second IEEE Workshop on Mobile computing systems and applications, WMCSA’99 (pp. 90–100).

  16. Johnson, D.B., & Maltz, D.A. (1996). Dynamic source routing in ad hoc wireless networks. In Mobile computing (pp. 153–181). Heidelberg: Springer.

  17. Liu, G., Lee, B-S., Seet, B-C., Foh, C-H., Wong, K-J., & Lee, K-K. (2004). A routing strategy for metropolis vehicular communications. In Information networking. networking technologies for broadband and mobile networks (Lecture notes in computer science, pp. 134–143, Vol. 3090). Berlin, Heidelberg: Springer.

  18. Füßler, H., Mauve, M., Hartenstein, H., Käsemann, M., & Vollmer, D. (2003). Mobicom poster: Location-based routing for vehicular ad-hoc networks. ACM SIGMOBILE Mobile Computing and Communications Review, 7(1), 47–49.

    Article  Google Scholar 

  19. Hui, F. (2005). A survey on the characterization of Vehicular Ad Hoc Networks routing solutions. In ECS (pp. 1–15).

  20. Jabbarpour, M. R., Md Noor, R., Khokhar, R. H., & Ke, C.-H. (2014). Cross-layer congestion control model for urban vehicular environments. Journal of Network and Computer Applications, 44, 1–16.

    Article  Google Scholar 

  21. Khokhar, R.H., Zia, T., Ghafoor, K.Z., Lloret, J., Shiraz, M. (2013). Realistic and Efficient Radio Propagation Model for V2X Communications. KSII Transactions on Internet & Information Systems, 7(8). doi:10.1007/978-3-319-04283-1.

  22. Fonseca, A., & Vazão, T. (2013). Applicability of position-based routing for VANET in highways and urban environment. Journal of Network and Computer Applications, 36(3), 961–973.

    Article  Google Scholar 

  23. Nikumbh, M. D., & Bhoi, M. A. (2013). A survey of positioned based routing protocol in VANET. International Journal of Modern Engineering Research (IJMER), 3(2), 1015–1018.

    Google Scholar 

  24. da Silva Camões, A. R. (2013). Geographic location and routing in vehicular networks. Master, tecnicolisboa.

  25. Raw, R. S., & Das, S. (2011). Performance comparison of Position based routing Protocols in vehicle-to-vehicle (V2V) Communication. International Journal of Engineering Science and Technology, 3(1), 435–444.

    Google Scholar 

  26. Hassan, A. N., Abdullah, A. H., Sheet, D. K., & Qureshi, K. N. (2014). Comparison of position based routing protocols of vehicular AD HOC network. World Applied Sciences Journal, 31(3), 341–345.

    Google Scholar 

  27. He, G. (2002). Destination-sequenced distance vector (DSDV) protocol. Networking Laboratory: Helsinki University of Technology.

    Google Scholar 

  28. Karp, B., & Kung, H-T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on Mobile computing and networking (pp. 243–254). ACM.

  29. Gerls, M. (2002). Fisheye State Routing (FSR) for Ad Hoc Networks. Internet Draft, draft-ietf-manet-fsr-03 txt.

  30. Clausen, T., Jacquet, P., Adjih, C., Laouiti, A., Minet, P., Muhlethaler, P., Qayyum, A., & Viennot, L. (2003). Optimized link state routing protocol (OLSR).

  31. Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. (2012). A survey of security challenges in cognitive radio networks: solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

  32. Park, V., & Corson, M.S. (1997). Temporally-ordered routing algorithm (TORA) version 1 functional specification. Internet-Draft, draft-ietf-manet-tora-spec-00. Txt.

  33. Namboodiri, V., Agarwal, M., & Gao, L. (2004). A study on the feasibility of mobile gateways for vehicular ad-hoc networks. In Proceedings of the 1st ACM International Workshop on Vehicular ad hoc networks (pp. 66–75). ACM.

  34. Patel, V. J., & Anuradha, P. G. (2012). A review on routing overhead in broadcast based protocol on VANET. International Journal of Engineering and Innovative Technology (IJEIT), 2(5), 109–113.

    Google Scholar 

  35. Beijar, N. (2002). Zone routing protocol (ZRP). Finland: Networking Laboratory, Helsinki University of Technology.

    Google Scholar 

  36. Nikaein, N., Bonnet, C., & Nikaein, N. (2001). Harp-hybrid ad hoc routing protocol. In Proceedings of International Symposium on Telecommunications (IST) (pp 56–67).

  37. Mauve, M., Widmer, J., & Hartenstein, H. (2001). A survey on position-based routing in mobile ad hoc networks. IEEE Network, 15(6), 30–39.

    Article  Google Scholar 

  38. Krishna, P., Vaidya, N. H., Chatterjee, M., & Pradhan, D. K. (1997). A cluster-based approach for routing in dynamic networks. ACM SIGCOMM Computer Communication Review, 27(2), 49–64.

    Article  Google Scholar 

  39. Song, T., Xia, W., Song, T., Shen, L. (2010). A cluster-based directional routing protocol in VANET. In 12th IEEE International Conference on Communication Technology (ICCT) (pp. 1172–1175).

  40. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  41. Spyropoulos, T., Rais, R. N., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  42. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2012). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  43. Aquino, R., & Edwards, A. (2006). A reactive location routing algorithm with cluster-based flooding for inter-vehicle communication. Computación y Sistemas, 9(4), 297–313.

    Google Scholar 

  44. Wang, T., & Wang, G. (2010). TIBCRPH: traffic infrastructure based cluster routing protocol with handoff in VANET. In 19th Annual IEEE Wireless and Optical Communications Conference (WOCC) (pp. 1–5).

  45. Kihl, M., Sichitiu, M., & Joshi, H.P. (2008). Design and evaluation of two geocast protocols for vehicular ad-hoc networks. Journal of Internet Engineering, 2(1), 127–135.

  46. Allal, S., & Boudjit, S. (2012). Geocast routing protocols for vanets: Survey and guidelines. In Sixth International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS) (pp. 323–328).

  47. Ghafoor, K. Z., Abu Bakar, K., Lloret, J., Khokhar, R. H., & Lee, K. C. (2013). Intelligent beaconless geographical forwarding for urban vehicular environments. Wireless Networks, 19(3), 345–362.

    Article  Google Scholar 

  48. Ibrahim, K., Weigle, M.C., & Abuelela, M. (2009). p-IVG: Probabilistic inter-vehicle geocast for dense vehicular networks. In IEEE 69th Vehicular Technology Conference. VTC Spring 2009. (pp 1–5).

  49. Park, S., Lee, E., Park, H., Lee, H., & Kim, S.-H. (2010). Mobile geocasting to support mobile sink groups in wireless sensor networks. IEEE Communications Letters, 14(10), 939–941.

    Article  Google Scholar 

  50. Chaurasia, N., Sharma, S., & Soni, D. (2011). Review study of routing protocols and versatile challenges of MANET. International Journal, 1(2), 150–157.

    Google Scholar 

  51. Kihl, M., Sichitiu, M., Ekeroth, T., & Rozenberg, M. (2007) Reliable geographical multicast routing in vehicular ad-hoc networks. In Wired/wireless internet communications (Lecture notes in computer science, pp. 315–325, Vol. 4517). Berlin, Heidelberg: Springer.

  52. Chen, Y.-S., Lin, Y.-W., & Lee, S.-L. (2010). A mobicast routing protocol in vehicular ad-hoc networks. Mobile Networks and Applications, 15(1), 20–35.

    Article  MathSciNet  Google Scholar 

  53. Junhai, L., Liu, X., & Danxia, Y. (2008). Research on multicast routing protocols for mobile ad-hoc networks. Computer Networks, 52(5), 988–997.

    Article  MATH  Google Scholar 

  54. Li, P., Guo, S., Yu, S., & Vasilakos, A.V. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In INFOCOM, 2012 Proceedings IEEE (pp. 100–108).

  55. Yen, Y.-S., Chao, H.-C., Chang, R.-S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  56. Royer, E.M. (2000). Multicast ad hoc on-demand distance vector (MAODV) routing. IETF Internet Draft, draft-ietf-manet-maodv-00 txt.

  57. Jetcheva, J.G., & Johnson, D.B. (2001). Adaptive demand-driven multicast routing in multi-hop wireless ad hoc networks. In Proceedings of the 2nd ACM International Symposium on Mobile ad hoc networking & computing (pp. 33–44). ACM.

  58. Patel, A., Latifi, M., Souza, A.B., Xavier, F.A., Celestino, J., & Oliveira, F.D. (2013). Stable multicast trees based on Ant Colony optimization for vehicular Ad Hoc networks. In Proceedings of the 2013 International Conference on Information Networking (ICOIN), IEEE Computer Society (pp. 101–106).

  59. Laouiti, A., Jacquet, P., Minet, P., Viennot, L., Clausen, T., & Adjih, C. (2003) Multicast optimized link state routing. INRIA research report RR–4721.

  60. Lee, S.-J., Su, W., & Gerla, M. (2002). On-demand multicast routing protocol in multihop wireless mobile networks. Mobile Networks and Applications, 7(6), 441–453.

    Article  Google Scholar 

  61. Tian, K., Zhang, B., Mouftah, H., Zhao, Z., & Ma, J. (2009). Destination-driven on-demand multicast routing protocol for wireless ad hoc networks. In ICC’09 IEEE International Conference on Communications, 2009 (pp. 1–5).

  62. Tonguz, O. K., Wisitpongphan, N., & Bai, F. (2010). DV-CAST: A distributed vehicular broadcast protocol for vehicular ad hoc networks. IEEE Wireless Communications, 17(2), 47–57.

    Article  Google Scholar 

  63. Nekovee, M., & Bogason, B.B. (2007). Reliable and effcient information dissemination in intermittently connected vehicular adhoc networks. In IEEE 65th Vehicular Technology Conference (pp. 2486–2490). VTC2007-Spring.

  64. Maia, G., Aquino, A.L., Viana, A., Boukerche, A., & Loureiro, A.A. (2012). HyDi: A hybrid data dissemination protocol for highway scenarios in vehicular ad hoc networks. In Proceedings of the second ACM international symposium on Design and analysis of intelligent vehicular networks and applications (pp. 115–122). ACM.

  65. Nakorn, N.N., & Rojviboonchai, K. (2010). DECA: Density-aware reliable broadcasting in vehicular ad hoc networks. In 2010 International Conference on Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON) (pp. 598–602).

  66. Zhou, L., Chao, H.-C., & Vasilakos, A. V. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. Selected Areas in Communications, IEEE Journal on, 29(7), 1358–1367.

    Article  Google Scholar 

  67. Yao, Y., Cao, Q., & Vasilakos, A.V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In IEEE 10th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS), 2013 (pp. 182–190).

  68. Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., & Mauve, M. (2003). A routing strategy for vehicular ad hoc networks in city environments. In Proceedings of the IEEE Intelligent Vehicles Symposium, 2003 (pp. 156–161).

  69. Käsemann, M., Füßler, H., Hartenstein, H., & Mauve, M. (2002). A reactive location service for mobile ad hoc networks. Citeseer.

  70. Chen, J-C. (2003). Dijkstra’s shortest path algorithm. Journal of Formalized Mathematics 15.

  71. Seet, B-C., Liu, G., Lee, B-S., Foh, C-H., Wong, K-J., Lee, K-K. (2004). A-STAR: A mobile ad hoc routing strategy for metropolis vehicular communications. In NETWORKING 2004. Networking technologies, services, and protocols; performance of computer and communication networks; mobile and wireless communications (pp. 989–999). New York: Springer.

  72. Gong, J., Xu, C-Z., & Holle, J. (2007). Predictive directional greedy routing in vehicular ad hoc networks. In IEEE 27th International Conference on Distributed Computing Systems Workshops, 2007. ICDCSW’07 (pp. 2–2).

  73. Ding, Y., Wang, C., & Xiao, L. (2007). A static-node assisted adaptive routing protocol in vehicular networks. In Proceedings of the fourth ACM international workshop on Vehicular ad hoc networks. ACM (pp. 59–68).

  74. Borsetti, D., & Gozalvez, J. (2010) Infrastructure-assisted geo-routing for cooperative vehicular networks. In IEEE Vehicular Networking Conference (VNC) (pp. 255–262).

  75. Cianfrani, A., Eramo, V., Listanti, M., Polverini, M., & Vasilakos, A. V. (2012). An OSPF-integrated routing strategy for QoS-aware energy saving in IP backbone networks. IEEE Transactions on Network and Service Management, 9(3), 254–267.

    Article  Google Scholar 

  76. Luo, J., Gu, X., Zhao, T., & Yan, W. (2010). A mobile infrastructure based VANET routing protocol in the urban environment. In IEEE 2010 International Conference on Communications and Mobile Computing (CMC) (pp. 432–437).

  77. Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In 8th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON) (pp. 46–54).

  78. Cheng, H., Xiong, N., Vasilakos, A. V., Tianruo Yang, L., Chen, G., & Zhuang, X. (2012). Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks. Ad Hoc Networks, 10(5), 760–773.

    Article  Google Scholar 

  79. Pan, H-Y., Jan, R-H., Jeng, A.A-K., Chen, C., & Tseng, H-R. (2011) Mobile gateway routing for vehicular networks. In Proceedings of the 8th IEEE Asia Pacific wireless communication symposium (APWCS 2011).

  80. Granelli, F., Boato, G., & Kliazovich, D. (2006). MORA: A movement-based routing algorithm for vehicle ad hoc networks. In IEEE Workshop on Automotive Networking and Applications (AutoNet 2006), San Francisco, USA.

  81. Menouar, H., Lenardi, M., & Filali, F. (2007). Movement prediction-based routing (MOPR) concept for position-based routing in vehicular networks. In 66th IEEE Vehicular Technology Conference, VTC-2007 Fall 2007 (pp. 2101–2105).

  82. Menouar, H., Lenardi, M., & Filali, F. (2006). An intelligent movement-based routing for VANETs. In ITS world congress, London.

  83. Menouar, M., Lenardi, M., & Filali, F. (2005). A movement prediction based routing protocol for vehicle-to-vehicle communications. Communications, 21, 07–2005.

    Google Scholar 

  84. Wei, G., Ling, Y., Guo, B., Xiao, B., Vasilakos, A.V. (2011) Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman filter. Computer Communications, 34(6), 793–802.

  85. Luo, Y., Zhang, W., & Hu, Y. (2010). A new cluster based routing protocol for VANET. In IEEE Second International Conference on Networks Security Wireless Communications and Trusted Computing (NSWCTC) (pp. 176–180).

  86. Raw, R.S., & Lobiyal, D. (2010). B-MFR routing protocol for vehicular ad hoc networks. In IEEE International Conference on Networking and Information Technology (ICNIT) (pp. 420–423).

  87. Stojmenovic, I., Ruhil, A. P., & Lobiyal, D. (2006). Voronoi diagram and convex hull based geocasting and routing in wireless networks. Wireless communications and mobile computing, 6(2), 247–258.

    Article  Google Scholar 

  88. Prasanth, K., Duraiswamy, K., Jayasudha, K., & Chandrasekar, C. (2009). Edge node based greedy routing for VANET with constant bit rate packet transmission. International Journal of Recent Trends in Engineering, 2(4), 14–19.

    Google Scholar 

  89. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  90. Brahmi, N., Boussedjra, M., Mouzna, J., & Bayart, M. (2009). Adaptative movement aware routing for vehicular ad hoc networks. In Proceedings of the International Conference on Wireless Communications and Mobile Computing: Connecting the World Wirelessly (pp. 1310–1315). New York: ACM.

  91. Haklay, M., & Weber, P. (2008). Openstreetmap: User-generated street maps. IEEE Pervasive Computing, 7(4), 12–18.

    Article  Google Scholar 

  92. Behrisch, M., Bieker, L., Erdmann, J., & Krajzewicz, D. (2011). Sumo-simulation of urban mobility-an overview. In SIMUL 2011, The Third International Conference on Advances in System Simulation (pp. 55–60).

  93. Baumgart, I., Heep, B., & Krause, S. (2007). OverSim: A flexible overlay network simulation framework. In IEEE Global Internet Symposium (pp. 79–84).

  94. Martinez, F. J., Toh, C.-K., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2011). A street broadcast reduction scheme (SBR) to mitigate the broadcast storm problem in VANETs. Wireless Personal Communications, 56(3), 559–572.

    Article  Google Scholar 

  95. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. (2013). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 16(1), 92–109.

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by UM High Impact Research MoE Grant UM.C/625/1/HIR/MOHE/FCSIT/09 from the Ministry of Education Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Jabbarpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jabbarpour, M.R., Marefat, A., Jalooli, A. et al. Performance analysis of V2V dynamic anchor position-based routing protocols. Wireless Netw 21, 911–929 (2015). https://doi.org/10.1007/s11276-014-0825-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-014-0825-8

Keywords

Navigation