Skip to main content
Log in

QoS-equilibrium slot allocation for beam hopping in broadband satellite communication systems

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In broadband satellite communication systems, beam hopping (BH) is more and more welcome to compensate the low-power-efficiency wide beam and the low-spectrum-efficiency multiple spot beams simultaneously. As a flexible coverage method, BH demands efficient hopping strategy to reach the desired quality of service (QoS). In this paper, we consider the QoS equilibrium, in particular the delay fairness, among different cells illuminated by one hopping beam through designing the hopping strategy on the condition of capacity satisfaction. Due to the physical limitation that hopping speed is much slower than packet arrival speed, the ideal first-come-first-serve packet scheduling is not realizable, which compels us to pursuit the optimal slot scheduling instead. In this paper, we consider a long-term delay fairness problem by per-period slot allocation for BH, using instantaneous and statistical information. To deal with the complex stochastic programming problem, we introduce the time-sharing principle to uncouple the variables and adopt stochastic gradient theory to deduce the suboptimal close-form solution. Our contributions are in three folds: firstly, it is the first time to consider the delay fairness not the traditional capacity fairness for BH; secondly, a general per-period decision scheme is proposed for the unique slot allocation in the perspective of queuing; thirdly, a suboptimal close-form solution for the per-period slot allocation is obtained, which could also cope with burst traffic cases. In simulation, we verify our method’s advantage in terms of delay fairness comparing with the existing similar works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mokhtar, A., & Azizoglu, M. (2000). On the downlink throughput of a broadband LEO satellite network with hopping beams. IEEE Communications Letters, 4(12), 390–393.

    Article  Google Scholar 

  2. ESA Project: Beam Hopping Techniques for Multibeam Satellite Systems, http://telecom.esa.int/telecom/www/object/index.cfm?fobjectid=29159.

  3. Whitefield, D., Gopal, R., & Arnold, S. (2006). Spaceway now and in the future: On-board IP packet switching satellte communication network. In Military Communications Conference, 2006. MILCOM 2006 (pp. 1–7). IEEE.

  4. Jacomb-Hood, A. W., Dentinger, A. M., & Maalouf, K. J. (2003) Apparatus, method, and computer program products for cell-hopping satellite communications. US Patent 6,522,643. 2003-2-18.

  5. Bever, M. E., Cooper, S. A., & Jue, R., et al. (2006) Downlink beam hopping waveform. US Patent 6,992,992. 2006-1-31.

  6. Reddy, N. (2002). Spot beam hopping packet schedule system. 2002-6-18.

  7. Pecorella, T., Fantacci, R., Lasagni, C., et al. (2007). Study and implementation of switching and beam-hopping techniques in satellites with on board processing. In Satellite and space communications. 2007. IWSSC’07. International workshop on (pp. 206–210). IEEE.

  8. Anzalchi, J., Couchman, A., & Gabellini, P., et al. (2010) Beam hopping in multi-beam broadband satellite systems: System simulation and performance comparison with non-hopped systems. In Advanced satellite multimedia systems conference (ASMA) and the 11th signal processing for space communications workshop (SPSC), 2010 5th (pp. 248–255). IEEE.

  9. Lei, J., & Vzquez-Castro, M. (2011). Multibeam satellite frequency/time duality study and capacity optimization. Journal of Communications and Networks, 13(5), 472–480.

    Article  Google Scholar 

  10. Fonseca, N. J. G., & Sombrin, J. (2012). Multi-beam reflector antenna system combining beam hopping and size reduction of effectively used spots. IEEE Antennas and Propagation Magazine, 54(2), 88–99.

    Article  Google Scholar 

  11. Sharma, S. K., Chatzinotas, S., & Ottersten, B. (2014). Cognitive beamhopping for spectral coexistence of multibeam satellites. International Journal of Satellite Communications and Networking, 33(1), 69–91.

    Article  Google Scholar 

  12. Neely, M., Modiano, E., & Rohrs, C. (2002). Power and server allocation in a multi-beam satellite with time varying channels. In IEEE INFOCOM (Vol. 3).

  13. Choi, J. P., & Chan, V. W. S. (2005). Optimum power and beam allocation based on traffic demand and channel conditions over satellite downlinks. IEEE Transactions on Communications, 4(6), 2983–2993.

    Google Scholar 

  14. Asmussen, S. (1987). Applied probability and queues. New York: Wiley.

    MATH  Google Scholar 

  15. Xu, Y., Wang, J., & Wu, Q. (2011). Effective capacity region of two-user opportunistic spectrum access. Science China Information Sciences, 54(9), 1928–1937.

    Article  MathSciNet  Google Scholar 

  16. Castro, M. A. V., & Granados, G. S. (2007). Cross-layer packet scheduler design of a multibeam broadband satellite system with adaptive coding and modulation. IEEE Transactions on Wireless Communications, 6(1), 248–258.

    Article  Google Scholar 

  17. ITU-T Recommendation G. 1010: End-user multimedia QoS categories, http://www.itu-t.org.

  18. Jalali, A., Padovani, R., & Pankaj, R. (2000). Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system. In Proceedings of IEEE VTC.

  19. Tao, M., Liang, Y.-C., & Zhang, F. (2008). Resource allocation for delay differentiated traffic in multiuser OFDM systems. IEEE Transactions on Wireless Communications, 7(6), 2190–2201.

    Article  Google Scholar 

  20. Kushner, H. J., & Yin, G. (2003). Stochastic approximation algorithms and applications (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  21. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge, MA: Cambridge University Press.

    Book  MATH  Google Scholar 

  22. Xu, Y., Wang, J., Wu, Q., Anpalagan, A., & Yao, Y. (2012). Opportunistic spectrum access in unknown dynamic environment: A game-theoretic stochastic learning solution. IEEE Transactions on Wireless Communications, 11(4), 1380–1391.

    Article  Google Scholar 

  23. Neely, M. J., Modiano, E., & Rohrs, C. E. (2003). Power allocation and routing in multi-beam satellites with time varying channels. IEEE Transactions on Networking, 11, 138–152.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 61231011). The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han Han.

Appendices

Appendix 1: Proof of Theorem 1

Without loss of generality, we define \({{\mathop {t}\limits ^{\rightharpoonup }}^*} = \left( {t_1^ *,t_2^ * ,\ldots ,t_M^ *} \right) \) as the optimal solution for minimizing the reference function under constraint, i.e.

$$\begin{aligned} {{\mathop {t}\limits ^{\rightharpoonup }}^*}= arg\min {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T). \end{aligned}$$
(28)

subjecting to \(\sum \nolimits _{i = 1}^M {t_i^ * /T} = 1\). Since \({{\mathop {t}\limits ^{\rightharpoonup }}^*}\) is the minimum value, for any \(\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}\), we have that

$$\begin{aligned} {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T) \ge {\fancyscript{G}}({{\mathop {t}\limits ^{\rightharpoonup }}^*}/T). \end{aligned}$$
(29)

Substituting this \(\mathop {t}\limits ^{\rightharpoonup } \) into the shifted function, we have that

$$\begin{aligned} {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T - \mathop {p}\limits ^{\rightharpoonup } ) > {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T). \end{aligned}$$
(30)

Therefore, we have

$$\begin{aligned} {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T - \mathop {p}\limits ^{\rightharpoonup } ) > {\fancyscript{G}}({{\mathop {t}\limits ^{\rightharpoonup }}^*}/T). \end{aligned}$$
(31)

for any given \(\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}\). This is to say,

$$\begin{aligned} \mathop {\min }\limits _{\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}} {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T - \mathop {p}\limits ^{\rightharpoonup } ) > {\fancyscript{G}}({{\mathop {t}\limits ^{\rightharpoonup }}^ * }/T). \end{aligned}$$
(32)

This completes the proof.

Appendix 2: Proof of Lemma 1

At first, it can be easily known that

$$\begin{aligned} \mathop {\min }\limits _{\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}} {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T) + \mathop {\min }\limits _{\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}} {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T - \mathop {p}\limits ^{\rightharpoonup } ) \le \mathop {\min }\limits _{\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}} \left[ {{\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T) + {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T - \mathop {p}\limits ^{\rightharpoonup } )} \right] . \end{aligned}$$
(33)

Combining with the Theorem 1 which says \(\mathop {\hbox {min}}\nolimits _{\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}} {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T) <\mathop {\hbox {min}}\nolimits _{\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}} {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T - \mathop {p}\limits ^{\rightharpoonup } )\), we know

$$\begin{aligned} \mathop {\min }\limits _{\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}} \mathrm{{2}}{\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T) \le \mathop {\min }\limits _{\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}} \left[ {{\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T) + {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T - \mathop {p}\limits ^{\rightharpoonup } )} \right] , \end{aligned}$$
(34)

which proves the left part of (18). Then, we define a new function \(\varphi (\mathop {t}\limits ^{\rightharpoonup } /T) = \sum \nolimits _{i = 1}^M {\frac{{{A_i}}}{{{t_i}/T \times {\mu _i}}}} + \sum \nolimits _{i = M + 1}^{2M} {\frac{{{A_i}}}{{{t_i}/T \times {\mu _i} - {\lambda _i}}}} \) with \(2M\) variables, i.e. \(\mathop {t}\limits ^{\rightharpoonup } = ({t_1},{t_2},\ldots ,{t_M},{t_{M + 1}},\ldots ,{t_{2M}})\), where \({\mu _i} = {\mu _{i + M}}, {A_i} = {A_{i + M}}, {\lambda _i} = {\lambda _{i + M}}\).

In addition, the candidate variable vector set is set as \({\mathfrak{R}}' = \left\{ {({t_1},{t_2},\ldots ,{t_{2M}})|({t_1},{t_2},\ldots ,{t_M}) \in {\mathfrak{R}},{t_i} = {t_{i + M}},\forall i} \right\} \). Learned from the proof of the Theorem 1, we know that the conclusion of Theorem 1 could also be used to the new function, i.e.

$$\begin{aligned} \mathop {\min }\limits _{\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}'} \varphi (\mathop {t}\limits ^{\rightharpoonup } /T) < \mathop {\min }\limits _{\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}'} \, \,\varphi (\mathop {t}\limits ^{\rightharpoonup } /T - \mathop {q}\limits ^{\rightharpoonup }), \hbox {where} \mathop {q}\limits ^{\rightharpoonup } = (\mathop {p}\limits ^{\rightharpoonup },\underbrace{0,0,\ldots ,0}_M). \end{aligned}$$
(35)

This proves the right part of the (18):

$$\begin{aligned} \mathop {\min }\limits _{\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}} \left[ {{\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T) + {\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T - \mathop {p}\limits ^{\rightharpoonup } )} \right] < \mathop {\min }\limits _{\mathop {t}\limits ^{\rightharpoonup } \in {\mathfrak{R}}} \mathrm{{2}}{\fancyscript{G}}(\mathop {t}\limits ^{\rightharpoonup } /T - \mathop {p}\limits ^{\rightharpoonup } ). \end{aligned}$$
(36)

Till now, the proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Zheng, X., Huang, Q. et al. QoS-equilibrium slot allocation for beam hopping in broadband satellite communication systems. Wireless Netw 21, 2617–2630 (2015). https://doi.org/10.1007/s11276-015-0934-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0934-z

Keywords

Navigation