Skip to main content

Advertisement

Log in

Energy harvesting and battery power based routing in wireless sensor networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) are a collection of several small and inexpensive battery-powered nodes, commonly used to monitor regions of interests and to collect data from the environment. Several issues exist in routing data packets through WSN, but the most crucial problem is energy. There are a number of routing approaches in WSNs that address the issue of energy by the use of different energy-efficient methods. This paper, presents a brief summary of routing and related issues in WSNs. The most recent energy-efficient data routing approaches are reviewed and categorized based on their aims and methodologies. The traditional battery based energy sources for sensor nodes and the conventional energy harvesting mechanisms that are widely used to in energy replenishment in WSN are reviewed. Then a new emerging energy harvesting technology that uses piezoelectric nanogenerators to supply power to nanosensor; the type of sensors that cannot be charged by conventional energy harvesters are explained. The energy consumption reduction routing strategies in WSN are also discussed. Furthermore, comparisons of the variety of energy harvesting mechanisms and battery power routing protocols that have been discussed are presented, eliciting their advantages, disadvantages and their specific feature. Finally, a highlight of the challenges and future works in this research domain is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards & Interfaces, 36(2), 263–270.

    Article  Google Scholar 

  2. Abdul-Salaam, G., Abdullah, A. H., Anisi, M. H., Gani, A., & Alelaiwi, A. (2015). A comparative analysis of energy conservation approaches in hybrid wireless sensor networks data collection protocols. Telecommunication Systems, 1–21. doi: 10.1007/s11235-015-0092-8.

  3. Acampora, G., Gaeta, M., Loia, V., & Vasilakos, A. V. (2010). Interoperable and adaptive fuzzy services for ambient intelligence applications. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 5(2), 8.

    Google Scholar 

  4. Akyildiz, I. F., Brunetti, F., & Blázquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks, 52(12), 2260–2279.

    Article  Google Scholar 

  5. Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks, 1(1), 3–19.

    Article  Google Scholar 

  6. Al-Karaki, J. N., Ul-Mustafa, R., & Kamal, A. E. (2009). Data aggregation and routing in wireless sensor networks: Optimal and heuristic algorithms. Computer Networks, 53(7), 945–960.

    Article  MATH  Google Scholar 

  7. Allameh, S., Akogwu, O., Collinson, M., Thomas, J., & Soboyejo, W. (2007). Piezoelectric generators for biomedical and dental applications: Effects of cyclic loading. Journal of Materials Science Materials in Medicine, 18(1), 39–45.

    Article  Google Scholar 

  8. Alsalih, W., Hassanein, H., & Akl, S. (2010). Placement of multiple mobile data collectors in wireless sensor networks. Ad Hoc Networks, 8(4), 378–390.

    Article  Google Scholar 

  9. Alwan, H., & Agarwal, A. (2009). A survey on fault tolerant routing techniques in wireless sensor networks. In Third international conference on sensor technologies and applications (SENSORCOMM ‘09) (pp. 366–371).

  10. Alzoubi, K., Li, X.-Y., Wang, Y., Wan, P.-J., & Frieder, O. (2003). Geometric spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 14(4), 408–421.

    Article  Google Scholar 

  11. Angelopoulos, C. M., & Nikoletseas, S. (2011). Aggregated mobility-based topology inference for fast sensor data collection. Computer Communications, 34(13), 1570–1579.

    Article  Google Scholar 

  12. Anisi, M. H., Abdullah, A. H., Coulibaly, Y., & Razak, S. A. (2013). EDR: Efficient data routing in wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 12(1), 46–55.

    Article  Google Scholar 

  13. Anisi, M. H., Abdul-Salaam, G., & Abdullah, A. H. (2015). A survey of wireless sensor network approaches and their energy consumption for monitoring farm fields in precision agriculture. Precision Agriculture, 16(2), 216–238.

    Article  Google Scholar 

  14. Asim, M., Mokhtar, H., & Merabti, M. (2009). A cellular approach to fault detection and recovery in wireless sensor networks. In Third international conference on sensor technologies and applications (SENSORCOMM’09) (pp. 352–357).

  15. Bangash, J. I., Abdullah, A. H., Anisi, M. H., & Khan, A. W. (2014). A survey of routing protocols in wireless body sensor networks. Sensors, 14(1), 1322–1357.

    Article  Google Scholar 

  16. Banimelhem, O., & Khasawneh, S. (2012). GMCAR: Grid-based multipath with congestion avoidance routing protocol in wireless sensor networks. Ad Hoc Networks, 10(7), 1346–1361.

    Article  Google Scholar 

  17. Bari, A., Jaekel, A., Jiang, J., & Xu, Y. (2012). Design of fault tolerant wireless sensor networks satisfying survivability and lifetime requirements. Computer Communications, 35(3), 320–333.

    Article  Google Scholar 

  18. Ben-Othman, J., & Yahya, B. (2010). Energy efficient and QoS based routing protocol for wireless sensor networks. Journal of Parallel and Distributed Computing, 70(8), 849–857.

    Article  MATH  Google Scholar 

  19. Benini, L., Farella, E., & Guiducci, C. (2006). Wireless sensor networks: Enabling technology for ambient intelligence. Microelectronics Journal, 37(12), 1639–1649.

    Article  Google Scholar 

  20. Bhattacharyya, D., Kim, T.-H., & Pal, S. (2010). A comparative study of wireless sensor networks and their routing protocols. Sensors, 10(12), 10506–10523.

    Article  Google Scholar 

  21. Bhuiyan, M., Wang, G., & Vasilakos, A. (2015). Local area prediction-based mobile target tracking in wireless sensor networks. IEEE Transactions on Computers, 64(7), 1968–1982.

    Article  MathSciNet  Google Scholar 

  22. Biswas, S., & Morris, R. (2005). ExOR: Opportunistic multi-hop routing for wireless networks. ACM SIGCOMM Computer Communication Review, 35(4), 133–144.

    Article  Google Scholar 

  23. Bo, W., Han-Ying, H., & Wen, F. (2008). An improved leach protocol for data gathering and aggregation in wireless sensor networks. In International conference on computer and electrical engineering (ICCEE 2008) (pp. 398–401).

  24. Boukerche, A., Turgut, B., Aydin, N., Ahmad, M. Z., Bölöni, L., & Turgut, D. (2011). Routing protocols in ad hoc networks: A survey. Computer Networks, 55(13), 3032–3080.

    Article  Google Scholar 

  25. Bowen, C., Kim, H., Weaver, P., & Dunn, S. (2014). Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy & Environmental Science, 7(1), 25–44.

    Article  Google Scholar 

  26. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion+ dilation in networks via” quality of routing&# X201D; games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  27. Byun, J., & Park, S. (2011). Development of a self-adapting intelligent system for building energy saving and context-aware smart services. IEEE Transactions on Consumer Electronics, 57(1), 90–98.

    Article  Google Scholar 

  28. Caliò, R., Rongala, U. B., Camboni, D., Milazzo, M., Stefanini, C., De Petris, G., & Oddo, C. M. (2014). Piezoelectric energy harvesting solutions. Sensors, 14(3), 4755–4790.

    Article  Google Scholar 

  29. Camillò, A., Nati, M., Petrioli, C., Rossi, M., & Zorzi, M. (2013). IRIS: Integrated data gathering and interest dissemination system for wireless sensor networks. Ad Hoc Networks, 11(2), 654–671.

    Article  Google Scholar 

  30. Cano, C., Bellalta, B., Sfairopoulou, A., & Oliver, M. (2011). Low energy operation in WSNS: A survey of preamble sampling MAC protocols. Computer Networks, 55(15), 3351–3363.

    Article  Google Scholar 

  31. Cao, X., Chen, J., Gao, C., & Sun, Y. (2009). An optimal control method for applications using wireless sensor/actuator networks. Computers & Electrical Engineering, 35(5), 748–756.

    Article  MATH  Google Scholar 

  32. Challal, Y., Ouadjaout, A., Lasla, N., Bagaa, M., & Hadjidj, A. (2011). Secure and efficient disjoint multipath construction for fault tolerant routing in wireless sensor networks. Journal of Network and Computer Applications, 34(4), 1380–1397.

    Article  Google Scholar 

  33. Chatterjea, S., Nieberg, T., Meratnia, N., & Havinga, P. (2008). A distributed and self-organizing scheduling algorithm for energy-efficient data aggregation in wireless sensor networks. ACM Transactions on Sensor Networks (TOSN), 4(4), 20.

    Article  Google Scholar 

  34. Chen, S., Sinha, P., Shroff, N. B., & Joo, C. (2014). A simple asymptotically optimal joint energy allocation and routing scheme in rechargeable sensor networks. IEEE/ACM Transactions on Networking (TON), 22(4), 1325–1336.

    Article  Google Scholar 

  35. Chilamkurti, N., Zeadally, S., Vasilakos, A., & Sharma, V. (2009). Cross-layer support for energy efficient routing in wireless sensor networks. Journal of Sensors, 2009, 1–9.

    Article  Google Scholar 

  36. Chipara, O., He, Z., Xing, G., Chen, Q., Wang, X., Lu, C., et al. (2006). Real-time power-aware routing in sensor networks. In 14th IEEE international workshop on quality of service (IWQoS 2006) (pp. 83–92).

  37. Choe, H. J., Ghosh, P., & Das, S. K. (2010). QoS-aware data reporting control in cluster-based wireless sensor networks. Computer Communications, 33(11), 1244–1254.

    Article  Google Scholar 

  38. Clementi, A. E., Penna, P., & Silvestri, R. (2004). On the power assignment problem in radio networks. Mobile Networks and Applications, 9(2), 125–140.

    Article  MATH  Google Scholar 

  39. Considine, J., Li, F., Kollios, G., & Byers, J. (2004). Approximate aggregation techniques for sensor databases. In Proceedings of the 20th international conference on data engineering (pp. 449–460).

  40. Das, S. M., Pucha, H., & Hu, Y. C. (2008). Distributed hashing for scalable multicast in wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 19(3), 347–362.

    Article  Google Scholar 

  41. Díaz-Anadón, M. O., & Leung, K. K. (2011). TDMA scheduling for event-triggered data aggregation in irregular wireless sensor networks. Computer Communications, 34(17), 2072–2081.

    Article  Google Scholar 

  42. Dimokas, N., Katsaros, D., & Manolopoulos, Y. (2010). Energy-efficient distributed clustering in wireless sensor networks. Journal of Parallel and Distributed Computing, 70(4), 371–383.

    Article  MATH  Google Scholar 

  43. Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNS. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    Google Scholar 

  44. Ferng, H.-W., Tendean, R., & Kurniawan, A. (2012). Energy-efficient routing protocol for wireless sensor networks with static clustering and dynamic structure. Wireless Personal Communications, 65(2), 347–367.

    Article  Google Scholar 

  45. Förster, A., & Murphy, A. L. (2010). A critical survey and guide to evaluating WSN routing protocols. In The first international workshop on networks of cooperating objects (CONET), Stockholm.

  46. Gagarin, A., Hussain, S., & Yang, L. T. (2010). Distributed hierarchical search for balanced energy consumption routing spanning trees in wireless sensor networks. Journal of Parallel and Distributed Computing, 70(9), 975–982.

    Article  MATH  Google Scholar 

  47. Guo, S., Wang, C., & Yang, Y. (2014). Joint mobile data gathering and energy provisioning in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2836–2852.

    Article  Google Scholar 

  48. Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.

    Article  Google Scholar 

  49. Han, S.-W., Jeong, I.-S., & Kang, S.-H. (2013). Low latency and energy efficient routing tree for wireless sensor networks with multiple mobile sinks. Journal of Network and Computer Applications, 36(1), 156–166.

    Article  Google Scholar 

  50. Hassanein, H., & Luo, J. (2006). Reliable energy aware routing in wireless sensor networks. In 2nd IEEE workshop on dependability and security in sensor networks and systems (DSSNS 2006) (pp. 54–64).

  51. He, S., Chen, J., Sun, Y., Yau, D. K., & Yip, N. K. (2010). On optimal information capture by energy-constrained mobile sensors. IEEE Transactions on Vehicular Technology, 59(5), 2472–2484.

    Article  Google Scholar 

  52. Heinzelman, W. R., Kulik, J., & Balakrishnan, H. (1999). Adaptive protocols for information dissemination in wireless sensor networks. In Proceedings of the 5th annual ACM/IEEE international conference on mobile computing and networking (pp. 174–185).

  53. Hou, J., & Gao, Y. (2010). Greenhouse wireless sensor network monitoring system design based on solar energy. In International conference on challenges in environmental science and computer engineering (CESCE) (pp. 475–479).

  54. Huang, H., Hu, G., Yu, F., & Zhang, Z. (2011). Energy-aware interference-sensitive geographic routing in wireless sensor networks. IET Communications, 5(18), 2692–2702.

    Article  MathSciNet  Google Scholar 

  55. Huang, P., Wang, C., & Xiao, L. (2012). Improving end-to-end routing performance of greedy forwarding in sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(3), 556–563.

    Article  Google Scholar 

  56. Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In Proceedings of the 6th annual international conference on mobile computing and networking (pp. 56–67).

  57. Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the internet of things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.

    Article  Google Scholar 

  58. Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Transactions on Nanotechnology, 11(3), 570–580.

    Article  Google Scholar 

  59. Kamat, P. V. (2006). Harvesting photons with carbon nanotubes. Nano Today, 1(4), 20–27.

    Article  Google Scholar 

  60. Khanna, G., Bagchi, S., & Wu, Y.-S. (2004). Fault tolerant energy aware data dissemination protocol in sensor networks. In International conference on dependable systems and networks (pp. 795–804).

  61. Kiess, W., & Mauve, M. (2007). A survey on real-world implementations of mobile ad-hoc networks. Ad Hoc Networks, 5(3), 324–339.

    Article  Google Scholar 

  62. Konstantopoulos, C., Pantziou, G., Gavalas, D., Mpitziopoulos, A., & Mamalis, B. (2012). A rendezvous-based approach enabling energy-efficient sensory data collection with mobile sinks. IEEE Transactions on Parallel and Distributed Systems, 23(5), 809–817.

    Article  Google Scholar 

  63. Koutsonikolas, D., Das, S. M., Hu, Y. C., & Stojmenovic, I. (2010). Hierarchical geographic multicast routing for wireless sensor networks. Wireless Networks, 16(2), 449–466.

    Article  Google Scholar 

  64. Lai, W. K., Fan, C. S., & Lin, L. Y. (2012). Arranging cluster sizes and transmission ranges for wireless sensor networks. Information Sciences, 183(1), 117–131.

    Article  Google Scholar 

  65. Lee, J.-H., & Jung, I.-B. (2010). Speedy routing recovery protocol for large failure tolerance in wireless sensor networks. Sensors, 10(4), 3389–3410.

    Article  Google Scholar 

  66. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  67. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  68. Li, Y., & Shi, R. (2015). An intelligent solar energy-harvesting system for wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1–12.

    MathSciNet  Google Scholar 

  69. Liu, B.-H., & Jhang, J.-Y. (2014). Efficient distributed data scheduling algorithm for data aggregation in wireless sensor networks. Computer Networks, 65, 73–83.

    Article  Google Scholar 

  70. Liu, H., Jia, X., Wan, P.-J., Liu, X., & Yao, F. F. (2007). A distributed and efficient flooding scheme using 1-hop information in mobile ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 18(5), 658–671.

    Article  Google Scholar 

  71. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  Google Scholar 

  72. Liu, X.-Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., et al. (2015). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Article  Google Scholar 

  73. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  74. Madden, S., Szewczyk, R., Franklin, M. J., & Culler, D. (2002). Supporting aggregate queries over ad-hoc wireless sensor networks. In Proceedings of the fourth IEEE workshop on mobile computing systems and applications (pp. 49–58).

  75. Madden, S. R., Franklin, M. J., Hellerstein, J. M., & Hong, W. (2005). TinyDB: An acquisitional query processing system for sensor networks. ACM Transactions on Database Systems (TODS), 30(1), 122–173.

    Article  Google Scholar 

  76. Manjeshwar, A., & and Agrawal, D. P. (2001). TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. In International parallel and distributed processing symposium (p. 30189a).

  77. Manjeshwar, A., & Apteen, D. A. (2002). A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In 1st IEEE international parallel and distributed processing symposium, Fort Lauderdale, FL, USA.

  78. Manjhi, A., Nath, S., & Gibbons, P. B. (2005). Tributaries and deltas: Efficient and robust aggregation in sensor network streams. In Proceedings of the ACM SIGMOD international conference on management of data (pp. 287–298).

  79. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers. doi:10.1109/TC.2015.2417543.

    Google Scholar 

  80. Merck, M. (2010). The icecube detector: A large sensor network at the south pole. IEEE Pervasive Computing, 9(4), 43–47.

    Article  Google Scholar 

  81. Michahelles, F., Matter, P., Schmidt, A., & Schiele, B. (2003). Applying wearable sensors to avalanche rescue. Computers & Graphics, 27(6), 839–847.

    Article  Google Scholar 

  82. Mohrehkesh, S., & Weigle, M. C. (2014). Optimizing energy consumption in terahertz band nanonetworks. IEEE Journal on Selected Areas in Communications, 32(12), 2432–2441.

    Article  Google Scholar 

  83. Nechibvute, A., Chawanda, A., & Luhanga, P. (2012). Piezoelectric energy harvesting devices: An alternative energy source for wireless sensors. Smart Materials Research, 2012, 1–13.

    Article  Google Scholar 

  84. Papadopoulos, A., Navarra, A., Mccann, J. A., & Pinotti, C. M. (2012). VIBE: An energy efficient routing protocol for dense and mobile sensor networks. Journal of Network and Computer Applications, 35(4), 1177–1190.

    Article  Google Scholar 

  85. Pierobon, M., Jornet, J. M., Akkari, N., Almasri, S., & Akyildiz, I. F. (2014). A routing framework for energy harvesting wireless nanosensor networks in the terahertz band. Wireless Networks, 20(5), 1169–1183.

    Article  Google Scholar 

  86. Pothuri, P. K., Sarangan, V., & Thomas, J. P. (2006). Delay-constrained, energy-efficient routing in wireless sensor networks through topology control. In Proceedings of the IEEE international conference on networking, sensing and control (ICNSC’06) (pp. 35–41).

  87. Pradhan, G. N., & Prabhakaran, B. (2008). Storage, retrieval, and communication of body sensor network data. In Proceedings of the 16th ACM international conference on multimedia (pp. 1161–1162).

  88. Ren, F., Zhang, J., He, T., Lin, C., & Ren, S. K. (2011). EBRP: Energy-balanced routing protocol for data gathering in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(12), 2108–2125.

    Article  Google Scholar 

  89. Ren, X., Liang, W., & Xu, W. (2015). Quality-aware target coverage in energy harvesting sensor networks. IEEE Transactions on Emerging Topics in Computing, 3(1), 8–21.

    Article  Google Scholar 

  90. Ritchie, L., Deval, S., Reisslein, M., & Richa, A. W. (2009). Evaluation of physical carrier sense based spanner construction and maintenance as well as broadcast and convergecast in ad hoc networks. Ad Hoc Networks, 7(7), 1347–1369.

    Article  Google Scholar 

  91. Sanchez, J., Ruiz, P. M., & Stojmenovic, I. (2006). GMR: Geographic multicast routing for wireless sensor networks. In 3rd annual IEEE communications society on sensor and ad hoc communications and networks (SECON ‘06) (pp. 20–29).

  92. Seema, A., & Reisslein, M. (2011). Towards efficient wireless video sensor networks: A survey of existing node architectures and proposal for a flexi-WVSNP design. IEEE Communications Surveys & Tutorials, 13(3), 462–486.

    Article  Google Scholar 

  93. Sengupta, S., Das, S., Nasir, M., Vasilakos, A. V., & Pedrycz, W. (2012). An Evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42(6), 1093–1102.

    Article  Google Scholar 

  94. Seo, J., Kim, M., Hur, I., Choi, W., & Choo, H. (2010). DRDT: Distributed and reliable data transmission with cooperative nodes for lossywireless sensor networks. Sensors, 10(4), 2793–2811.

    Article  Google Scholar 

  95. Sha, K., Shi, W., & Watkins, O. (2006). Using wireless sensor networks for fire rescue applications: Requirements and challenges. In IEEE international conference on electro/information technology (pp. 239–244).

  96. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the IETF protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.

    Article  Google Scholar 

  97. Sheu, J.-P., Sahoo, P. K., Su, C.-H., & Hu, W.-K. (2010). Efficient path planning and data gathering protocols for the wireless sensor network. Computer Communications, 33(3), 398–408.

    Article  Google Scholar 

  98. Sicari, S., Grieco, L. A., Boggia, G., & Coen-Porisini, A. (2012). DYDAP: A dynamic data aggregation scheme for privacy aware wireless sensor networks. Journal of Systems and Software, 85(1), 152–166.

    Article  Google Scholar 

  99. Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  100. Srbinovska, M., Gavrovski, C., Dimcev, V., Krkoleva, A., & Borozan, V. (2015). Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production, 88, 297–307.

    Article  Google Scholar 

  101. Sun, Y., He, Y., Zhang, B., & Liu, X. (2011). An energy efficiency clustering routing protocol for WSNS in confined area. Mining Science and Technology (China), 21(6), 845–850.

    Article  Google Scholar 

  102. Sung, J., Ahn, S., Park, T., Jang, S., Yun, D., Kang, J., et al. (2008). Wireless sensor networks for cultural property protection. In 22nd international conference on advanced information networking and applications-workshops (AINAW 2008) (pp. 615–620).

  103. Vasilakos, A. V., Li, Z., Simon, G., & You, W. (2015). Information centric network: Research challenges and opportunities. Journal of Network and Computer Applications, 52, 1–10.

    Article  Google Scholar 

  104. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  105. Villas, L. A., Boukerche, A., De Oliveira, H. A., De Araujo, R. B., & Loureiro, A. A. (2014). A Spatial correlation aware algorithm to perform efficient data collection in wireless sensor networks. Ad Hoc Networks, 12, 69–85.

    Article  Google Scholar 

  106. Wang, Y.-C., Peng, W.-C., & Tseng, Y.-C. (2010). Energy-balanced dispatch of mobile sensors in a hybrid wireless sensor network. IEEE Transactions on Parallel and Distributed Systems, 21(12), 1836–1850.

    Article  Google Scholar 

  107. Watfa, M. K. (2012). A position-based routing algorithm in 3D sensor networks. Wireless Communications and Mobile Computing, 12(1), 33–52.

    Article  Google Scholar 

  108. Wei, G., Ling, Y., Guo, B., Xiao, B., & Vasilakos, A. V. (2011). Prediction-based data aggregation in wireless sensor networks: Combining grey model and Kalman filter. Computer Communications, 34(6), 793–802.

    Article  Google Scholar 

  109. Wu, G., Lin, C., Xia, F., Yao, L., Zhang, H., & Liu, B. (2010). Dynamical jumping real-time fault-tolerant routing protocol for wireless sensor networks. Sensors, 10(3), 2416–2437.

    Article  Google Scholar 

  110. Xiang, L., Luo, J., & Vasilakos, A. (2011). Compressed Data aggregation for energy efficient wireless sensor networks. In 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 46–54).

  111. Xiao, Y., Peng, M., Gibson, J., Xie, G. G., Du, D.-Z., & Vasilakos, A. V. (2012). Tight performance bounds of multihop fair access for mac protocols in wireless sensor networks and underwater sensor networks. IEEE Transactions on Mobile Computing, 11(10), 1538–1554.

    Article  Google Scholar 

  112. Xiong, N., Vasilakos, A. V., Yang, L. T., Song, L., Pan, Y., Kannan, R., & Li, Y. (2009). Comparative analysis of quality of service and memory usage for adaptive failure detectors in healthcare systems. IEEE Journal on Selected Areas in Communications, 27(4), 495–509.

    Article  Google Scholar 

  113. Xu, H., Huang, L., Qiao, C., Zhang, Y., & Sun, Q. (2012). Bandwidth-power aware cooperative multipath routing for wireless multimedia sensor networks. IEEE Transactions on Wireless Communications, 11(4), 1532–1543.

    Article  Google Scholar 

  114. Xu, S., Hansen, B. J., & Wang, Z. L. (2010). Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications, 1, 93.

    Article  Google Scholar 

  115. Xu, S., Qin, Y., Xu, C., Wei, Y., Yang, R., & Wang, Z. L. (2010). Self-powered nanowire devices. Nature Nanotechnology, 5(5), 366–373.

    Article  Google Scholar 

  116. Xu, X., Ansari, R., Khokhar, A., & Vasilakos, A. V. (2015). Hierarchical data aggregation using compressive sensing (HDACS) in WSNS. ACM Transactions on Sensor Networks (TOSN), 11(3), 45.

    Article  Google Scholar 

  117. Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for internet of things. Journal of Network and computer Applications, 42, 120–134.

    Article  Google Scholar 

  118. Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2014). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4–18.

    Article  Google Scholar 

  119. Yang, Y., Zhang, H., Lin, Z.-H., Zhou, Y. S., Jing, Q., Su, Y., et al. (2013). Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano, 7(10), 9213–9222.

    Article  Google Scholar 

  120. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In IEEE 10th international conference on mobile ad hoc and sensor systems (MASS) (pp. 182–190).

  121. Yao, Y., & Gehrke, J. (2002). The cougar approach to in-network query processing in sensor networks. ACM Sigmod Record, 31(3), 9–18.

    Article  Google Scholar 

  122. Younis, M., Youssef, M., & Arisha, K. (2002). Energy-aware routing in cluster-based sensor networks. In Proceedings of the 10th IEEE international symposium on modeling, analysis and simulation of computer and telecommunications systems (MASCOTS 2002) (pp. 129–136).

  123. Yousefi, H., Yeganeh, M. H., Alinaghipour, N., & Movaghar, A. (2012). Structure-free real-time data aggregation in wireless sensor networks. Computer Communications, 35(9), 1132–1140.

    Article  Google Scholar 

  124. Yu, Y., Govindan, R., & Estrin, D. (2001). Geographical and energy aware routing: A recursive data dissemination protocol for wireless sensor networks. Technical report UCLA/CSD-TR-01-0023. Computer Science Department: UCLA.

  125. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  126. Zhang, B., Simon, R., & Aydin, H. (2013). Harvesting-Aware energy management for time-critical wireless sensor networks with joint voltage and modulation scaling. IEEE Transactions on Industrial Informatics, 9(1), 514–526.

    Article  Google Scholar 

  127. Zhang, C. (2013). Nonlinear oscillator for vibration energy harvesting. Google Patents.

  128. Zhang, X. M., Zhang, Y., Yan, F., & Vasilakos, A. V. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  129. Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.

    Article  Google Scholar 

  130. Zheng, G., Liu, S., & Qi, X. (2012). Clustering routing algorithm of wireless sensor networks based on Bayesian game. Journal of Systems Engineering and Electronics, 23(1), 154–159.

    Article  Google Scholar 

  131. Zhou, L., Naixue, X., Shu, L., Vasilakos, A., & Yeo, S.-S. (2010). Context-aware middleware for multimedia services in heterogeneous networks. IEEE Intelligent Systems, 25(2), 40–47. doi:10.1109/MIS.2010.48.

    Article  Google Scholar 

  132. Zhu, C., Zheng, C., Shu, L., & Han, G. (2012). A survey on coverage and connectivity issues in wireless sensor networks. Journal of Network and Computer Applications, 35(2), 619–632.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank University of Malaya for the financial support (UMRG Grant RP036A-15AET, RP036B-15AET, RP036C-15AET, RG325-15AFR) and facilities to carry out the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Anisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisi, M.H., Abdul-Salaam, G., Idris, M.Y.I. et al. Energy harvesting and battery power based routing in wireless sensor networks. Wireless Netw 23, 249–266 (2017). https://doi.org/10.1007/s11276-015-1150-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1150-6

Keywords

Navigation