Skip to main content
Log in

An overview of spectrum sharing techniques in cognitive radio communication system

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

As the complexities of wireless technologies increase, novel multidisciplinary approaches for the spectrum sharing/management are required with inputs from the technology, economics and regulations. Recently, the cognitive radio technology comes into action to handle the spectrum scarcity problem. To identify the available spectrum resource, decision on the optimal sensing and transmission time with proper coordination among the users for spectrum access are the important characteristics of spectrum sharing methods. In this paper, we have technically overviewed the state-of-the-art of the various spectrum sharing techniques and discussed their potential issues with emerging applications of the communication system, especially to enhance the spectral efficiency. The potential advantages, limiting factors, and characteristic features of the existing cognitive radio spectrum sharing domains are thoroughly discussed and an overview of the spectrum sharing is provided as it ensures the channel access without the interference/collision to the licensed users in the spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. NTIA. U.S. frequency allocations [online]. http://www.ntia.doc.gov/files/ntia/publications/2003-allochrt.pdf

  2. Hoossain, E., Niyato, D., & Han, Z. (2009). Dynamic spectrum access and management in cognitive radio networks. New York: Cambridge University Press.

    Book  Google Scholar 

  3. Zhao, Qing, & Sadler, B. M. (2007). A survey of dynamic spectrum access: Signal processing, networking, and regulatory policy. IEEE Signal Processing Magazine, 24(3), 79–89.

    Article  Google Scholar 

  4. Santivanez, C., Ramanathan, R., Partridge, C., Krishnan, R., Condell, M., & Polit, S. (2006). Opportunistic spectrum access: Challenges, architecture, protocols. In Proceedings of 2nd Annual International Workshop on Wireless Internet (WICON), New York, USA, pp. 1–9.

  5. Mitola, J., III (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. Thesis, Royal Institute of Technology (KTH) Sweden, May, 2000.

  6. Jondral, F. K. (2005). Software-defined radio: Basics and evolution to cognitive radio. EURASIP Journal on Wireless Communications and Networking, 5(3), 275–283.

    MATH  Google Scholar 

  7. Ramacher, U. (2007). Software-defined radio prospects for multi-standard mobile phones. IEEE Journal of Computer, 40(10), 62–69.

    Article  Google Scholar 

  8. Bagheri, R., Mirzaei, A., Heidari, M. E., Chehrazi, S., Lee, M., Mikhemar, M., et al. (2006). Software-defined radio receiver: Dream to reality. IEEE Communications Magazine, 44(8), 111–118.

    Article  Google Scholar 

  9. Arslan, H., & Yarkan, S. (2007). Cognitive radio, software defined radio, and adaptive wireless systems. Netherlands: Springer.

    Book  Google Scholar 

  10. Stevenson, C., Chouinard, G., Lei, Z. D., Hu, W. D., Shellhammer, S., & Caldwell, W. (2009). IEEE 802.22: The first cognitive radio wireless regional area network standard. IEEE Communications Magazine, 47(1), 130–138.

    Article  Google Scholar 

  11. Phunchongharn, P., Hossain, E., Niyato, D., & Camorlinga, S. (2010). A cognitive radio system for e-health applications in a hospital environment. IEEE Wireless Communications, 17(1), 20–28.

    Article  Google Scholar 

  12. Felice, M.- D., Chowdhury, K.- R., & Bononi, L. (2010). Analyzing the potential of cooperative cognitive radio technology on inter-vehicle communication. In Proceedings of wireless days (WD) IFIP, Venice, October 20–22, 2010, pp. 1–6.

  13. Pawelczak, P., Prasad, R.- V., Xia, L., & Niemegeers, I.- G.- M.- M. (2005). Cognitive radio emergency networks–requirements and design. In Proceedings of IEEE 1st international symposium on new frontiers in dynamic spectrum access networks (DySPAN), Baltimore, MD, USA, November 8–11, 2005, pp. 601–606.

  14. Hinman, R.- D. (2006). Application of cognitive radio technology to legacy military waveforms in a JTRS (Joint Tactical Radio System) radio. In Proceedings of IEEE Military Communications Conference (MILCOM), Washington, DC, October 23–25, 2006, pp. 1–5.

  15. Akyildiz, I.-F., Lee, W.-Y., Vuran, M.-C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  16. Wang, B., & Liu, K.-J.-R. (2011). Advances in cognitive radio networks: A survey. IEEE Journal of Selected Topics in Signal Processing, 5(1), 5–23.

    Article  Google Scholar 

  17. Akyildiz, I.-F., Lee, W.-Y., Vuran, M.-C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.

    Article  Google Scholar 

  18. Zhang, G., Yang, K., Song, J., & Li, Y. (2013). Fair and efficient spectrum splitting for unlicensed secondary users in cooperative cognitive radio networks. Wireless Personal Communications, 71(1), 299–316.

    Article  Google Scholar 

  19. Akyildiz, I.-F., Lo, B.-F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks. Physical Communication, 4(1), 40–62.

    Article  Google Scholar 

  20. Lee, C.-H., & Wolf, W. (2008). Energy efficient techniques for cooperative spectrum sensing in cognitive radios. In Proceedings of IEEE consumer communications and networking conference (CCNC), Las Vegas, NV, January 10–12, pp. 968–972.

  21. Sun, C., Zhang, W., & Letaief, K.-B. (2007). Cooperative spectrum sensing for cognitive radios under bandwidth constraints. In Proceedings of IEEE wireless communications and networking conference (WCNC), Kowloon, March 11–15, 2007, pp. 1–5.

  22. Sun, C., Zhang, W., & Letaief, K. B. (2007). Cluster-based cooperative spectrum sensing in cognitive radio systems. In: Proceedings of IEEE international conference on communications (ICC’ 07), Glasgow, June 24–28, pp. 2511–2515.

  23. Flajolet, P., & Martin, G. N. (1985). Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, 31(2), 182–209.

    Article  MathSciNet  MATH  Google Scholar 

  24. Quan, Z., Cui, S., & Sayed, A.-H. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.

    Article  Google Scholar 

  25. Ma, J. & Li, Y. G. (2007). Soft combination and detection for cooperative spectrum sensing in cognitive radio networks. In Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), Washington, DC, November 26–30, pp. 3139–3143.

  26. Song, M., Xin, C., Zhao, Y., & Cheng, X. (2012). Dynamic spectrum access: From cognitive radio to network radio. IEEE Wireless Communications, 19(1), 23–29.

    Article  Google Scholar 

  27. Chang, C.-W., & Kuo, C.-C. (2010). An interweave cognitive radio system based on the hierarchical 2D-spread MC-DS-CDMA. In Proceedings of IEEE vehicular technology conference fall (VTC 2010-Fall), Ottawa, Canada, September 6–9, 2010, pp. 1–5.

  28. Soysal, A., Ulukus, S., & Clancy C. (2008). Channel estimation and adaptive M-QAM in cognitive radio links. In IEEE proceedings of the international conference on communications (ICC’ 08), Beijing, May 19–23, 2008, pp. 4043–4047.

  29. Pursley, M.-B., & Royster, T. C. (2008). Low-complexity adaptive transmission for cognitive radios in dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications, 26(1), 83–94.

    Article  Google Scholar 

  30. Kim, D. I., Le, L. B., & Hossain, E. (2008). Joint rate and power allocation for cognitive radios in dynamic spectrum access environment. IEEE Transactions on Wireless Communications, 7(12), 5517–5527.

    Article  Google Scholar 

  31. Srinivasa, S. & Jafar, S.-A. (2006). The throughput potential of cognitive radio: A theoretical perspective. In Proceedings of the 40th Asilomar conference on signals, systems and computers (ACSSC’ 06), Pacific Grove, CA, 29 Oct.–1 Nov. 2006, pp. 221–225.

  32. Taki M., & Lahouti, F. (2009). Spectral efficiency optimized adaptive transmission for interfering cognitive radios. In Proceedings of the IEEE international conference on communications workshops (ICC 2009), Dresden, June 2009, pp. 1–6.

  33. Costa, M. (1983). Writing on dirty paper. IEEE Transactions on Information Theory, 29, 439–441.

    Article  MathSciNet  MATH  Google Scholar 

  34. Ghosh, C. (2009). Innovative approaches to spectrum selection, sensing, and sharing in cognitive radio networks. Ph. D. Thesis, University of Cincinnati, Ohio, April 2009.

  35. Dashti, M., Azmi, P., Navaie, K., & Razavizadeh, S.-M. (2013). Ergodic sum rate maximization for underlay spectrum sharing with heterogeneous traffic. Wireless Personal Communications, 71(1), 586–610.

    Article  Google Scholar 

  36. Kang, X., Liang, Y.-C., Garg, H.-K., & Zhang, L. (2009). Sensing based spectrum sharing in cognitive radio networks. IEEE Transactions on Vehicular Technology, 58(8), 4649–4654.

    Article  Google Scholar 

  37. Xu, D., Feng, Z., & Zhang, P. (2013). On the impacts of channel estimation errors and feedback delay on the ergodic capacity for spectrum sharing cognitive radio. Wireless Personal Communications, 72(4), 1875–1887.

    Article  Google Scholar 

  38. Pandit, Shweta, & Singh, G. (2015). Channel capacity in fading environment with CSI and interference power constraints for cognitive radio communication system. Wireless Networks, 21(4), 1275–1288.

    Article  Google Scholar 

  39. Chen, Y., Yu, G., Zhang, Z., Chen, H., & Qiu, P. (2008). On cognitive radio networks with opportunistic power control strategies in fading channels. IEEE Transactions on Wireless Communications, 7, 2752–2761.

    Article  Google Scholar 

  40. Kang, X. (2013). Optimal power allocation for fading cognitive multiple access channels: A two-user case. IEEE Wireless Communications Letters, 2(6), 683–686.

    Article  Google Scholar 

  41. Bansal, G., Hossain, Md.- J., & Bhargava, V.- K. (2011). Adaptive power loading for OFDM based cognitive radio systems with statistical interference constraint. IEEE Transactions on Wireless Communications, 10(9), 2786–2791.

    Article  Google Scholar 

  42. Pao, W.-C., & Chen, Y.-F. (2014). Adaptive gradient based method for adaptive power allocation in OFDM based cognitive radio networks. IEEE Transactions of Vehicular Technology, 63(2), 836–848.

    Article  Google Scholar 

  43. Zhang, Y., & Leung, C. (2010). An efficient power loading scheme for OFDM based cognitive radio systems. IEEE Transactions on Vehicular Technology, 59(4), 1858–1864.

    Article  Google Scholar 

  44. Li, D. (2011). Efficient power allocation for multi user cognitive radio networks. Wireless Personal Communications, 59(4), 589–597.

    Article  Google Scholar 

  45. Chen, Z., & Zhang, X.-D. (2012). Power and time allocation between multiple channels in cognitive radio networks. Wireless Personal Communications, 64(4), 783–794.

    Article  Google Scholar 

  46. Wang, S., Huang, F., & Wang, C. (2013). Adaptive proportional fairness resource allocation for OFDM-based cognitive radio networks. Wireless Networks, 19(3), 273–284.

    Article  Google Scholar 

  47. Le, L.-B., & Hossain, E. (2008). Resource allocation for spectrum underlay in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(12), 5306–5315.

    Article  Google Scholar 

  48. Peng, C., Zheng, H., & Zhao, B.-Y. (2006). Utilization and fairness in spectrum assignment for opportunistic spectrum access. Mobile Networks and Applications, 11(4), 555–576.

    Article  Google Scholar 

  49. Zhang, L., Liang, Y.-C., & Xin, Y. (2008). Joint beam forming and power allocation for multiple access channels in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 26(1), 38–51.

    Article  Google Scholar 

  50. Wang, S., Huang, F., & Zhou, Z.-H. (2011). Fast power allocation algorithm for cognitive radio networks. IEEE Communications Letters, 15(8), 845–847.

    Article  Google Scholar 

  51. Shaat, M., & Bader, F. (2009) Low complexity power loading scheme in cognitive radio networks: FBMC capability. In Proceedings of the IEEE international symposium on personal, indoor and mobile radio communications, Tokyo, September 13–16, 2009, pp. 2597–2602.

  52. Xie, R., Yu, F.-R., & Ji, H. (2012). Dynamic resource allocation for heterogeneous services in cognitive radio networks with imperfect channel sensing. IEEE Transactions on Vehicular Technology, 61(2), 770–780.

    Article  Google Scholar 

  53. Benjebbour, A., Saito, Y., Kishiyama, Y., Li, A., Harada, A., & Nakamura, T. (2013) Concept and practical considerations of non-orthogonal multiple access (NOMA) for future radio access. In Proceedings of international symposium on intelligent signal processing and communications systems (ISPACS), Naha, Japan, November 12–15, 2013, pp. 770–774.

  54. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013) System-level performance evaluation of downlink non-orthogonal multiple access (NOMA). In Proceedings of 24th IEEE international symposium on personal indoor and mobile radio communications (PIMRC), London, United Kingdom, September 8–11, 2013, pp. 611–615.

  55. Saito, Y., Kishiyama, Y., Benjebbour, A., Nakamura, T., Li, A., & Higuchi, K. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In Proceedings of 77th IEEE vehicular technology conference (VTC), Dresden, 2–5 June 2013, pp. 1–5.

  56. Teng, Y., Yu, F.-R., Wei, Y., Wang, L., & Zhang, Y. (2012). Behavior modeling for spectrum sharing in wireless cognitive networks. Wireless Networks, 18(8), 99–947.

    Article  Google Scholar 

  57. Guo, S., Dang, C., & Liao, X. (2011). Distributed algorithm for resource allocation of physical and transport layer in wireless cognitive ad-hoc networks. Wireless Networks, 17(2), 337–356.

    Article  Google Scholar 

  58. Xi, Y., & Yeh, E.-M. (2007). Distributed algorithm for spectrum allocation, power control, routing ad congestion control in wireless networks. In Proceedings of the ACM international symposium on mobile ad hoc networking and computing canada, September 9–14, pp. 180–189.

  59. Guo, S., Dang, C., & Liao, X. (2011). Distributed resource allocation with fairness for cognitive radios in wireless mobile ad-hoc networks. Wireless Networks, 17(6), 1493–1512.

    Article  Google Scholar 

  60. Niyato, D., & Hossain, E. (2008). Spectrum trading in cognitive radio networks: A market equilibrium based approach. IEEE Wireless Communications, 15(6), 71–80.

    Article  Google Scholar 

  61. Yu, Q. (2013). A survey of cooperative games for cognitive radio networks. Wireless Personal Communications, 73(3), 949–966.

    Article  Google Scholar 

  62. Nie, N., & Comaniciu, C. (2006). Adaptive channel allocation spectrum etiquette for cognitive radio networks. Journal of Mobile Networks and Applications, 11(6), 779–797.

    Article  Google Scholar 

  63. Olafsson, S., Glover, B., & Nekovee, M. (2007). Future management of spectrum. BT Technology Journal, 25(2), 52–63.

    Article  Google Scholar 

  64. Niyato, D., & Hossain, E. (2008). A non-cooperative game-theoretic framework for radio resource management in 4G heterogeneous wireless access networks. IEEE Transactions on Mobile Computing, 7(3), 332–345.

    Article  Google Scholar 

  65. Pandit, S., & Singh, G. (2013). Spectrum sharing in cognitive radio using game theory. In Proceedings of IEEE international advance computing conference (IACC-2013), India, February 22–23, pp. 1503–1506.

  66. Chang, H.-B., & Chen, K.-C. (2010). Auction based spectrum management of cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(4), 1923–1935.

    Article  Google Scholar 

  67. Maharjan, S., Zhang, Y., & Gjessing, S. (2011). Economic approaches for cognitive radio networks: A survey. Wireless Personal Communications, 57(1), 33–51.

    Article  Google Scholar 

  68. Ji, Z., & Liu, K.-J.-R. (2007). Dynamic spectrum sharing: A game theoretical overview. IEEE Communications Magazine, 45(5), 88–94.

    Article  Google Scholar 

  69. Niyato, D., & Hossain, E. (2008). Competitive spectrum sharing in cognitive radio networks: A dynamic game approach. IEEE Transactions on Wireless Communications, 7(7), 2651–2660.

    Article  Google Scholar 

  70. Aftab, O. (2002) Economic mechanisms for efficient wireless coexistence. MIT Tech. Rep. MIT-LCSTR-876. Cambridge, MA: Mass. Inst. Technol., Press.

  71. Iosifidis, G., & Koutsopoulos, I. (2011). Challenges in auction theory driven spectrum management. IEEE Communications Magazine, 49(8), 128–135.

    Article  Google Scholar 

  72. Teng, Y., Zhang, Y., Dai, C., Yang, F., & Song, M. (2011) Dynamic spectrum sharing through double auction mechanism in cognitive radio networks. In Proceedings of IEEE wireless communications and networking conference (WCNC), Cancun, Quintana Roo, 28–31, pp. 90–95.

  73. Deshmukh, K., Goldberg, A.- V., Hartline, J.- D., & Karlin, A.- R. (2002) Truthful and competitive double auctions. In Proceedings of the 10th European symposium on algorithms (ESA ‘02), September 2002.

  74. Jackson, M.-O., & Swinkels, J.-M. (2005). Existence of equilibrium in single and double private value auctions. Econometrica, 73(1), 93–139.

    Article  MathSciNet  MATH  Google Scholar 

  75. Peters, M., & Severinov, S. (2006). Internet auctions with many traders. Journal of Economic Theory, 130(1), 220–245.

    Article  MathSciNet  MATH  Google Scholar 

  76. Kasbekar, G.-S., & Sarkar, S. (2010). Spectrum auction framework for access allocation in cognitive radio networks. IEEE/ACM Transactions on Networking, 18(6), 1841–1854.

    Article  Google Scholar 

  77. Wang, S.- G., Xu, P., Xu, X.-H., Tang, S., Li, X.-Y., & Liu, X. (2010). TODA: Truthful online double auction for spectrum allocation in wireless networks. In Proceedings of IEEE symposium on new frontiers in dynamic spectrum, 6–9 April 2010, Singapore, pp. 1–10.

  78. Wu, Y., Zhu, Q., Huang, J., & Tsang, D.-H.-K. (2014). Revenue sharing based resource allocation for dynamic spectrum access networks. IEEE Journal on Selected Areas in Communications, 32(11), 2280–2296.

    Article  Google Scholar 

  79. Li, C., Liu, Z., Geng, X., Dong, M., Yang, F., Gan, X., et al. (2014). Two dimension spectrum allocation for cognitive radio networks. IEEE Transactions on Wireless Communications, 13(3), 1410–1423.

    Article  Google Scholar 

  80. Zhang, R., & Liang, Y.-C. (2008). Exploiting multi-antennas for opportunistic spectrum sharing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 88–102.

    Article  Google Scholar 

  81. Bakr, O., Johnson, M., Mudumbai, R., & Ramchandran, K. (2009). Multi-antenna interference cancellation techniques for cognitive radio applications. In Proceedings of IEEE wireless communications and networking conference (WCNC 2009), Budapest, 5–8 April, 1–6.

  82. Chiani, M., Win, M.-Z., & Zanella, A. (2003). On the capacity of spatially correlated MIMO Rayleigh-fading channels. IEEE Transactions on Information Theory, 49(49), 2363–2371.

    Article  MathSciNet  MATH  Google Scholar 

  83. Jeong, W.-C., Chung, J.-M., & Liu, D. (2008). Characteristic-function-based analysis of MIMO systems applying macroscopic selection diversity in mobile communications. Journal of Electronics and Telecommunications Research Institute, 30(3), 335–364.

    Google Scholar 

  84. Ihan, H.-I., Altunbas, I., & Uysal, M. (2011). Moment generating function-based performance evaluation of amplify-and-forward relaying in N* Nakagami fading channels. IET Communications, 5(3), 253–263.

    Article  Google Scholar 

  85. Wang, Y., & Yue, D.-W. (2009). Capacity of MIMO Rayleigh fading channels in the presence of interference and receive correlation. IEEE Transactions on Vehicular Technology, 58(8), 4398–4405.

    Article  Google Scholar 

  86. Bixio, L., Oliveri, G., Ottonello, M., & Raffetto, M. (2010). Cognitive radios with multiple antennas exploiting spatial opportunities. IEEE Transactions on Signal Processing, 58(8), 4453–4459.

    Article  MathSciNet  Google Scholar 

  87. Kang, M.-S., Jung, B.-C., Sung, D.-K., & Choi, W. (2008). A pre-whitening scheme in a MIMO-based spectrum-sharing environment,”. IEEE Communications Letters, 12(11), 831–833.

    Article  Google Scholar 

  88. Phan, K.-T., Vorobyov, S.-A., Sidiropoulos, N.-D., & Tellambura, C. (2009). Spectrum sharing in wireless networks via QoS-aware secondary multicast beam forming. IEEE Transactions on Signal Processing, 57(6), 2323–2335.

    Article  MathSciNet  Google Scholar 

  89. Sridharan, S., & Vishwanath, S. (2008). On the capacity of a class of MIMO cognitive radios. IEEE Journal of Selected Topics in Signal Processing, 2(1), 103–117.

    Article  Google Scholar 

  90. Adian, M.-G., & Aghaeinia, H. (2014). Optimal resource allocation in heterogeneous MIMO cognitive radio networks. Wireless Personal Communications, 76(1), 23–39.

    Article  Google Scholar 

  91. Rini, S., & Goldsmith, A. (2014). On the capacity of the multi-antenna Gaussian cognitive interference channel. IEEE Journal on Selected Areas in Communications, 32(11), 2252–2267.

    Article  Google Scholar 

  92. Maharshi, A., Tong, L., & Swami, A. (2003). Cross-layer designs of multichannel reservation MAC under Rayleigh fading. IEEE Transactions on Signal Processing, 51(8), 2054–2067.

    Article  Google Scholar 

  93. Wang, J., Li, L., Low, S. H., & Doyle, J.-C. (2005). Cross-layer optimization in TCP/IP networks. IEEE/ACM Transactions on Networking, 13(3), 582–595.

    Article  Google Scholar 

  94. Kim, H., & Shin, K. G. (2008). Efficient discovery of spectrum opportunities with MAC-layer sensing in cognitive radio networks. IEEE Transactions on Mobile Computing, 7(5), 533–545.

    Article  Google Scholar 

  95. Zhao, Q., Tong, L., Swami, A., & Chen, Y. (2007). Decentralized cognitive MAC for opportunistic spectrum access in ad hoc networks: A POMDP framework. IEEE Journal on Selected Areas in Communications, 25(3), 589–600.

    Article  Google Scholar 

  96. Jia, J., Zhang, Q., & Shen, X. (2008). HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management. IEEE Journal on Selected Areas in Communications, 26(1), 106–117.

    Article  Google Scholar 

  97. Cordeiro, C., & Challapali, K. (2007). C-MAC: A cognitive MAC protocol for multi-channel wireless networks. In Proceedings of 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks (DySPAN), Dublin, 17–20 April 2007, pp. 147–157.

  98. Su, H., & Zhang, X. (2008). CREAM-MAC: An efficient cognitive radio-enabled multi-channel MAC protocol for wireless networks. In Proceedings of IEEE international symposium on world of wireless, mobile and multimedia networks (WoWMoM), June 2008, Newport Beach, CA, pp. 1–8.

  99. Le, L. B. & Hossain, E. (2008) OSA-MAC: A multi-channel MAC protocol for opportunistic spectrum access in cognitive radio networks. In Proceedings of IEEE wireless communications and networking conference (WCNC), 31 March–3 April 2008, Las Vegas, NV, pp. 1426–1430.

  100. Lee, S. -H., Lee, B. -J., & Rhee, S. -H. (2012). Efficient utilization of available channels in dynamic spectrum access networks. Wireless Personal Communications, 67(1). http://link.springer.com/journal/11277/67/1/page/1, 95–104 August, 2012.

  101. Papadimitratos, P., Sankaranarayanan, S., & Mishra, A. (2005). A bandwidth sharing approach to improve licensed spectrum utilization. IEEE Communications Magazine, 43(12), S10–S14.

    Article  Google Scholar 

  102. Sabharwal, A., Khoshnevis, A., & Knightly, E. (2007). Opportunistic spectral usage: Bounds and a multi-band CSMA/CA protocol. IEEE/ACM Transactions on Networking, 15(3), 533–545.

    Article  Google Scholar 

  103. IEEE 802.11. Wireless LAN medium access control (MAC) and physical layer (PHY) Specifications, IEEE, June 2007.

  104. Lim, S., & Lee, T.-J. (2011). A self-scheduling multi-channel cognitive radio MAC protocol based on cooperative communications. IEICE Transactions on Communications, E94-B(6), 1657–1668.

    Article  Google Scholar 

  105. Pandit, Shweta, & Singh, G. (2015). Backofff algorithm in cognitive radio MAC-protocol for throughput enhancement. IEEE Transactions on Vehicular Technology, 64(5), 1991–2000.

    Article  Google Scholar 

  106. Hossain, R., Rijul, R.-H., Razzaque, M.-A., & Sarkar, A.-M.-J. (2014). Prioritized medium access control in cognitive radio ad hoc networks: Protocol and analysis. Wireless Personal Communications, 79(3), 2383–2408.

    Article  Google Scholar 

  107. Xie, P., Li, L., Zhu, J., Zheng, R., & Zhang, M. (2015). A cooperation and access spectrum sharing protocol with cooperative interference management. Wireless Personal Communications, 81(3), 997–1015.

    Article  Google Scholar 

  108. Lee, K., & Kim, C. (2013). Distributed sequential access MAC protocol for single hop wireless networks. Wireless Personal Communications, 72(4), 2177–2184.

    Article  Google Scholar 

  109. Shah, G., & Akan, O. (2014). Cognitive adaptive medium access control in cognitive radio sensor networks. IEEE Transactions on Vehicular Technology, 64(2), 757–767.

    Article  Google Scholar 

  110. Bian, K. & Park, J.-M. (2006). MAC-layer misbehaviors in multi-hop cognitive radio networks. In Proceedings of the US-Korea conference on science, technology and entrepreneurship (UKC2006), 2006, pp. 1–8.

  111. Jain, R. (1991). The art of computer system performance analysis: Techniques for experimental design, measurement, simulation and modeling. New Delhi: Wiley.

    MATH  Google Scholar 

  112. Timmers, M., Pollin, S., Dejonghe, A., Perre, L.-V., & Catthoor, F. (2010). A distributed multichannel MAC protocol for multihop cognitive radio networks,”. IEEE Transactions on Vehicular Technology, 59(1), 446–459.

    Article  Google Scholar 

  113. Liang, Y.-C., Zeng, Y., Peh, E.-C.-Y., & Hoang, A.-T. (2008). Sensing-throughput trade-off for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.

    Article  Google Scholar 

  114. Fan, R., & Jiang, H. (2010). Optimal multi-channel cooperative sensing in cognitive radio networks. IEEE Transactions on Wireless Communications, 9(3), 1128–1138.

    Article  Google Scholar 

  115. Chu, E., Liang, Y.-C., Guan, Y.-L., & Zeng, Y. (2009). Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view. IEEE Transactions on Vehicular Technology, 58(9), 5294–5299.

    Article  Google Scholar 

  116. Chair, Z., & Varshney, P. K. (1986). Optimal data fusion in multiple sensor detection systems. IEEE Transactions on Aerospace and Electronic Systems, 22(1), 98–101.

    Article  Google Scholar 

  117. Quan, Z., Cui, S., & Sayed, A. H. (2008). Optimal linear cooperation for spectrum sensing in cognitive radio networks. IEEE Journal of Selected Topics in Signal Processing, 2(1), 28–40.

    Article  Google Scholar 

  118. Lee, W.-Y., & Akyildiz, I.-F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845–3857.

    Article  Google Scholar 

  119. Akbar, I.-A. & Tranter, W.-H. (2007) Dynamic spectrum allocation in cognitive radio using hidden markov models: Poisson distributed case. In Proceedings of IEEE SoutheastCon, Richmond, VA, 22–25 March 2007, pp. 196–201.

  120. Stotas, S. & Nallanathan, A. (2010). On the throughput maximization of spectrum sharing cognitive radio networks. In Proceedings of IEEE global telecommunications conference (GLOBECOM 2010), Miami, FL, December 6–10, pp. 1–5.

  121. Pandit, S., & Singh, G. (2014). Throughput maximization with reduced data loss rate in cognitive radio network. Telecommunication Systems, 57(2), 209–215.

    Article  Google Scholar 

  122. Pandit, S. (2012) Spectrum sharing in cognitive radio system for throughput optimization and interference reduction. M. Tech. Thesis, Jaypee University of Information Technology, India, May 2012.

  123. Shannon, C. (1958). Channels with side information at the transmitter. IBM Journal of Research and Development, 2(2), 289–293.

    Article  MathSciNet  Google Scholar 

  124. Lee, W. (1990). Estimate of channel capacity in Rayleigh fading environment. IEEE Transactions on Vehicular Technology, 39(3), 187–189.

    Article  Google Scholar 

  125. Ghasem, A., & Sousa, E.-S. (2007). Fundamental limits of spectrum-sharing in fading environments. IEEE Transactions on Wireless Communications, 6(2), 649–658.

    Article  Google Scholar 

  126. Goldsmith, A.-J., & Varaiya, P.-P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6), 1986–1992.

    Article  MathSciNet  MATH  Google Scholar 

  127. Alouini, M.-S., & Goldsmith, A.-J. (1999). Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.

    Article  Google Scholar 

  128. Mallik, R. K., Win, M. Z., Shao, J. W., Alouini, M.-S., & Goldsmith, A. J. (2004). Channel capacity of adaptive transmission with maximal ratio combining in correlated Rayleigh fading. IEEE Transactions on Wireless Communications, 3(4), 1124–1133.

    Article  Google Scholar 

  129. Peppas, K., Lazarakis, F., Alexandridis, A., & Dangakis, K. (2010). Cascaded generalized-K fading channel. IET Communications, 4(1), 116–124.

    Article  MATH  Google Scholar 

  130. Bithas, P.-S., Mathiopoulos, P.-T., & Kotsopoulos, S.-A. (2007). Diversity reception over Generalized-K (K G ) fading channels. IEEE Transactions on Wireless Communications, 6(12), 4238–4243.

    Article  Google Scholar 

  131. Dwivedi, Vivek K., & Singh, G. (2012). A novel Marginal MGF based analysis of the channel capacity over correlated Nakagami-m fading with maximal-ratio combining diversity. Progress Electromagnetic Research B, 41, 333–356.

    Article  Google Scholar 

  132. Dwivedi, Vivek K., & Singh, G. (2012). A novel MGF based analysis of channel capacity of generalized-K fading with maximal ratio combining diversity. Progress Electromagnetic Research C, 26, 153–165.

    Article  Google Scholar 

  133. Renzo, M.-D., Graziosi, F., & Santucci, F. (2010). Channel capacity over generalized fading channels: A novel MGF-based approach for performance analysis and design of wireless communication systems. IEEE Transactions on Vehicular Technology, 59(1), 127–149.

    Article  Google Scholar 

  134. Devroye, N., Mitran, P., & Tarokh, V. (2006). Achievable rates in cognitive radio channels. IEEE Transactions on Information Theory, 52(5), 1813–1827.

    Article  MathSciNet  MATH  Google Scholar 

  135. Chang, J.-H., Tassiulas, L., & Farrokhi, F.-R. (2002). Joint transmitter receiver diversity for efficient space division multiaccess. IEEE Transactions Wireless Communications, 1(1), 16–27.

    Article  Google Scholar 

  136. Spencer, Q.-H., Swindlehurst, A.-L., & Haardt, M. (2004). Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels. IEEE Transactions on Signal Processing, 52(2), 461–471.

    Article  MathSciNet  Google Scholar 

  137. Jafar, S.-A., & Srinivasa, S. (2007). Capacity limits of cognitive radio with distributed and dynamic spectral activity. IEEE Journal Selected Areas in Communications, 25(3), 529–537.

    Article  Google Scholar 

  138. Gastpar, M. (2007). On capacity under receive and spatial spectrum-sharing constraints. IEEE Transactions on Information Theory, 53(2), 471–487.

    Article  MathSciNet  MATH  Google Scholar 

  139. Akin, S. (2011) Wireless communications and cognitive radio transmissions under quality of service constraints and channel uncertainty. Ph. D. Thesis, University of Nebraska.

  140. Rappaport, T. S., Shu Sun, R., Mayzus, H., Zhao, Y., Azar, K., Wang, G. N., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are sincerely thankful to the anonymous reviewers for critical comments and suggestions to improve the quality of the manuscript. The authors are also thankful to ISRO for project vide no. ISRO/RES/4/619/14-15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, S., Singh, G. An overview of spectrum sharing techniques in cognitive radio communication system. Wireless Netw 23, 497–518 (2017). https://doi.org/10.1007/s11276-015-1171-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1171-1

Keywords

Navigation