Skip to main content
Log in

Performance evaluation of sensor deployment using optimization techniques and scheduling approach for K-coverage in WSNs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In the wireless sensor networks, sensor deployment and coverage are the vital parameter that impacts the network lifetime. Network lifetime can be increased by optimal placement of sensor nodes and optimizing the coverage with the scheduling approach. For sensor deployment, heuristic algorithm is proposed which automatically adjusts the sensing range with overlapping sensing area without affecting the high degree of coverage. In order to demonstrate the network lifetime, we propose a new heuristic algorithm for scheduling which increases the network lifetime in the wireless sensor network. Further, the proposed heuristic algorithm is compared with the existing algorithms such as ant colony optimization, artificial bee colony algorithm and particle swarm optimization. The result reveals that the proposed heuristic algorithm with adjustable sensing range for sensor deployment and scheduling algorithm significantly increases the network lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Journal of Network and Computer Applications, 38(4), 393–422.

    Article  Google Scholar 

  2. Gungor, V. C., Lu, B., & Hancke, G. P. (2010). Opportunities and challenges of wireless sensor networks in smart grid. IEEE Transactions on Industrial Electronics, 5(10), 3557–3567.

    Article  Google Scholar 

  3. Cardei, M., & Wu, J. (2006). Energy-efficient coverage problems in wireless ad hoc sensor networks. Journal of Computer Communications and Sensor Networks, 29(4), 413–420.

    Google Scholar 

  4. Shih, K. P., Chen, H. C., Chou, C. M., & Liu, B. J. (2009). On target coverage in wireless heterogeneous sensor networks with multiple sensing units. Journal of Network and Computer Applications, 32(4), 866–877.

    Article  Google Scholar 

  5. Han, X., Cao, X. G., Loyd, E. L., & Shen, C. C. (2010). Fault-tolerant relay node placement in heterogeneous wireless sensor networks. IEEE Transactions on Mobile Computing, 9(5), 643–656.

    Article  Google Scholar 

  6. Krause, A., Rajagopal, R., Gupta, A., & Guestrin, C. (2011). Simultaneous optimization of sensor placements and balanced schedules. IEEE Transactions on Automatic Control, 56(10), 2390–2405.

    Article  MathSciNet  MATH  Google Scholar 

  7. Yang, D., Misra, S., Fang, X., Xue, G., & Zhang, J. (2012). Two-tiered constrained relay node placement in wireless sensor networks: Computational complexity and efficient approximations. IEEE Transactions on Mobile Computing, 11(8), 1399–1411.

    Article  Google Scholar 

  8. He, X., Yanh, H., & Gui, X. (2010). The maximum coverage set calculated algorithm for WSN area coverage. Journal of Networks, 5(6), 650–657.

    Article  Google Scholar 

  9. Ammari, H. M., & Das, S. K. (2012). Centralized and clustered k-coverage protocols for wireless sensor networks. IEEE Transactions on Computers, 61(1), 118–133.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ashouri, M., Zali, Z., Mousavi, S. R., & Hashemi, M. R. (2012). New optimal solution to disjoint set K-coverage for lifetime extension in wireless sensor networks. IET Wireless Sensor Systems, 2(1), 31–39.

    Article  Google Scholar 

  11. Jia, S. G., Lu, L. P., Su, L. D., Xing, G. L., & Zhai, M. Y. (2013). An efficient sleeping scheduling for save energy consumption in wireless sensor networks. Advanced Materials Research, 756(759), 2288–2293.

    Article  Google Scholar 

  12. Chen, C. P., Mukhopadhyay, S. C., Chuang, C. L., Liu, M. Y., & Jiang, J. A. (2015). Efficient coverage and connectivity preservation with load balance for wireless sensor networks. IEEE Sensors Journal, 15(1), 48–62.

    Article  Google Scholar 

  13. Kulkarni, R. V., & Venayagamoorthy, G. K. (2011). Particle swarm optimization in wireless sensor networks: A brief survey. IEEE Transactions on Systems, Man, and Cybernetics, System, 41(2), 262–267.

    Article  Google Scholar 

  14. Mini, S., Udgata, S. K., & Sabat, S. L. (2014). Sensor deployment and scheduling for target coverage problem in wireless sensor networks. IEEE Sensors Journal, 14(3), 636–644.

    Article  Google Scholar 

  15. Bojkovic, Z., & Bakmaz, B. (2008). A survey on wireless sensor networks deployment. WSEAS Transactions on Communications, 7(12), 1172–1181.

    Google Scholar 

  16. Hao, J., Zhang, B., Jiao, Z., & Hashemi, M. R. (2015). An adaptive compressive sensing based sample scheduling mechanism for wireless sensor networks. Pervasive and Mobile Computing, 2, 113–125.

    Article  Google Scholar 

  17. Silberschatz, A., Galvin, P. B., & Gagne, G. (1998). Operating system concepts. Boston: Addison-Wesley.

    MATH  Google Scholar 

  18. Yuan, X., & Duan, Z. (2009). Fair round-robin: A low complexity packet schduler with proportional and worst-case fairness. IEEE Transactions on Computers, 58(3), 365–379.

    Article  MathSciNet  MATH  Google Scholar 

  19. Maleki, I., Khaze, S. R., Tabrizi, M. M., & Bagherinia, A. (2013). A new approach for area coverage problem in wireless sensor networks with hybrid particle swarm optimization and differential evolution algorithms. International Journal of Mobile Network Communications & Telematics, 3(6), 61–67.

    Article  Google Scholar 

  20. Zorbas, D., & Razafindralambo, T. (2013). Prolonging network lifetime under probabilistic target coverage in wireless mobile sensor networks. IEEE Transactions on Computer Communications, 36(9), 1039–1053.

    Article  Google Scholar 

  21. Zhou, F. (2011). Energy-efficient coverage using sensors with continuously adjustable sensing ranges. Seventh international conference on natural computation (ICNC), 109–113.

  22. Gu, y., Liu, H., & Zhao, B. (2007). Target coverage with QoS requirements in wireless sensor networks. International conference on intelligent pervasive computing, 35–38.

  23. Medagliani, P., Leguay, J., Ferrari, G., Gay, V., & Lopez-Ramos, M. (2012). Energy-efficient mobile target detection in wireless sensor networks with random node deployment and partial coverage. IEEE Transactions on Computer Communications, 8(3), 429–447.

    Google Scholar 

  24. Zhao, Q., & Gurusamy, M. (2008). Lifetime maximization for connected target coverage in wireless sensor networks. IEEE/ACM Transactions on Networking, 16(6), 1378–1391.

    Article  Google Scholar 

  25. Kim, H., & Han, S. (2015). An efficient sensor deployment scheme for large-scale wireless sensor networks. IEEE Communications Letters, 19(1), 98–101.

    Article  Google Scholar 

  26. Turkogullari, Y. B., Aras, N., Altinel, I. K., & Ersoy, C. (2010). A column generation based heuristic for sensor placement, activity scheduling and data routing in wireless sensor networks. European Journal of Operational Research, 207(2), 1014–1026.

    Article  MATH  Google Scholar 

  27. Hong, Y., Du, H., Li, D., & Chen, W. (2012). Conflict-aware data aggregation scheduling in wireless sensor networks with adjustable transmission range. Discrete Mathematics, Algorithms and Applications, 4(3), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  28. Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Computers & Mathematics with Applications, 57(11), 1756–1766.

    Article  MathSciNet  MATH  Google Scholar 

  29. Mao, X., Chen, H., Qiu, P., & Zhang, Z. (2010). Energy-efficient scheduling for multiple access in wireless sensor networks: A job scheduling method. Computer Networks, 54(13), 2137–2146.

    Article  MATH  Google Scholar 

  30. Karaboga, D., & Basturk, B. (2008). On the performance of artificial bee colony (ABC) algorithm. Applied Soft Computing, 8, 687–697.

    Article  Google Scholar 

  31. Sabat, S. L., Udgata, S. K., & Ajith, A. (2010). Artificial bee colony algorithm for small signal model parameter extraction of MESFET. Engineering Applications of Artificial Intelligence, 23(2), 689–694.

    Article  Google Scholar 

  32. Riley, J., Greggers, U., Smith, A., Reynolds, D. R., & Menzel, R. (2005). The flight paths of honeybees recruited by the waggle dance. Nature, 435, 205–207.

    Article  Google Scholar 

  33. Lee, J. W., Choi, B., & Lee, J. (2011). Energy efficient coverage of wireless sensor networks using ant colony optimization with three types of pheromones. IEEE Transactions on Industrial Informatics, 7(3), 419–427.

    Article  Google Scholar 

  34. Lin, Y., Zhang, J., Chung, H. S. H., Ip, W. H., Li, Y., & Shi, Y. H. (2012). An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Applications and Reviews, 42(3), 408–420.

    Article  Google Scholar 

  35. Liao, W. H., Kao, Y., & Wu, R. T. (2011). Ant colony optimization based sensor deployment protocol for wireless sensor networks. Expert Systems with Applications, 38(6), 6599–6605.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakthivel Rathinasamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, M., Rajagopal, V. & Rathinasamy, S. Performance evaluation of sensor deployment using optimization techniques and scheduling approach for K-coverage in WSNs. Wireless Netw 24, 683–693 (2018). https://doi.org/10.1007/s11276-016-1361-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1361-5

Keywords

Navigation