Skip to main content
Log in

An enhanced wireless sensor network localization scheme for radio irregularity models using hybrid fuzzy deep extreme learning machines

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Localization is one of the key challenges facing wireless sensor networks (WSNs), particularly in the absence of global positioning equipment such as GPS. However, equipping WSNs with GPS sensors entails the additional costs of hardware logic and increased power consumption, thereby lowering the lifetime of the sensor, which is normally operated on a non-rechargeable battery. Range-free-based localization schemes have shown promise compared to range-based approaches as preferred and cost-effective solutions. Typical range-free localization algorithms have a key advantage: simplicity. However, their precision must be improved, especially under varying node densities, sensing coverage conditions, and topology diversity. Thus, this work investigates the probable integration of two soft-computing techniques, namely, Fuzzy Logic (FL) and Extreme Learning Machines (ELMs), with the goal of enhancing the approximate localization precision while considering the above factors. In stark contrast to ELMs, FL methods yield high accuracy under low node density and limited coverage conditions. In addition, as a hybrid scheme, extra steps are integrated to compensate for the effects of irregular topology (i.e., noisy signal density due to obstacles). Signal and weight are normalized during the fuzzy states, while the ELM uses a deep learning concept to adjust the signal coverage, including the spring force error estimation enhancement. The performance of our hybrid scheme is evaluated via simulations that demonstrate the scheme’s effectiveness compared with other soft-computing-based range-free localization schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805.

    Article  MATH  Google Scholar 

  2. Lindroos, V., Tilli, M., Lehto, A., & Motooka, T. (2010). Handbook of silicon based MEMS materials and technologies. Oxford: William Andrew.

    Google Scholar 

  3. Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. doi:10.1016/j.future.2013.01.010.

    Article  Google Scholar 

  4. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114. doi:10.1109/MCOM.2002.1024422.

    Article  Google Scholar 

  5. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  6. Han, G., Xu, H., Duong, T. Q., Jiang, J., & Hara, T. (2013). Localization algorithms of wireless sensor networks: A survey. Telecommunications Systems, 52(4), 2419–2436. doi:10.1007/s11235-011-9564-7.

    Article  Google Scholar 

  7. Cheng, L., Wu, C., Zhang, Y., Wu, H., Li, M., & Maple, C. (2012). A survey of localization in wireless sensor network. International Journal of Distributed Sensor Networks, 2012, 962523. doi:10.1155/2012/962523.

    Article  Google Scholar 

  8. Alrajeh, N. N., Bashir, M., & Shams, B. (2013). Localization techniques in wireless sensor networks. International Journal of Distributed Sensor Networks, 2013, 304628. doi:10.1155/2013/304628.

    Article  Google Scholar 

  9. He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2003). Range-free localization schemes for large scale sensor networks. In Proceedings of the 9th annual conference on mobile computing and networking (pp. 81–95). New York: ACM.

  10. Bulusu, N., Heidemann, J., & Estrin, D. (2000). GPS-less low-cost outdoor localization for very small devices. IEEE Personal Communications, 7(5), 28–34. doi:10.1109/98.878533.

    Article  Google Scholar 

  11. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2012). Energy-efficient routing protocols in wireless sensor networks. IEEE Communications Surveys and Tutorials, 15(2), 551–591.

    Article  Google Scholar 

  12. Niculescu, D., & Nath, B. (2003). DV based positioning in ad hoc networks. Telecommunications Systems, 22(1–4), 267–280.

    Article  Google Scholar 

  13. Nagpal, R., Shrobe, J., Bachrach, J. (1999). Organizing a global coordinate system from local information on an ad hoc sensor network. In Proceedings of the 2nd international conference on information processing in sensor networks (pp. 333–348). New York: ACM.

  14. Keshtgary, M., Fasihy, M., & Ronaghi, Z. (2011). Performance evaluation of hop-based rangefree localization methods in wireless sensor networks. ISRN Communications and Networks, 2011, 485486. doi:10.5402/2011/485486.

  15. Chen, X., & Zhang, B. (2012). Improved DV-Hop node localization algorithm in wireless sensor networks. International Journal of Distributed Sensor Networks, 2012, 213980. doi:10.1155/2012/213980.

    Article  Google Scholar 

  16. So-In, C., & Katekaew, W. (2015). Hybrid fuzzy centroid with MDV-Hop BAT localization algorithms in wireless sensor networks. International Journal of Distributed Sensor Networks, 2015, 1–18. doi:10.1155/2015/894560.

    Article  Google Scholar 

  17. Chaturvedi, D. K. (2008). Soft computing techniques and its applications in electrical engineering. Berlin: Springer.

    MATH  Google Scholar 

  18. Jang, H., & Topal, E. (2014). A review of soft computing technology applications in several mining problems. Applied Soft Computing, 22, 638–651. doi:10.1016/j.asoc.2014.05.019.

    Article  Google Scholar 

  19. Huanxiang, J., Yong, W., & Xiaoling, T. (2010). Localization algorithm for mobile anchor node based on genetic algorithm in wireless sensor networks. In Proceedings of the IEEE international conference on intelligent computing and integrated systems (pp. 40–44). Los Alamitos, CA: IEEE.

  20. Yang, G., Yi, Z., Tianquan, N., Keke, Y., & Tongtong, X. (2010). An improved genetic algorithm for wireless sensor networks. In Proceedings of the IEEE 5th international conference on bio-inspired computing: Theories and applications (pp. 439–443). Los Alamitos, CA: IEEE.

  21. Maneesha, V. R., Divya, P. L., Raghavendra, V. K., & Rekha, M. (2012). A swarm intelligence based distributed localization technique for wireless sensor network. In Proceedings of the international conference on advances in computing, communications and informatics (pp. 367–373). New York: ACM.

  22. Low, K.-S., Nguyen, H. A., & Guo, H. (2008). A particle swarm optimization approach for the localization of a wireless sensor network. In Proceedings of the IEEE international symposium on industrial electronics (pp. 1820–1825). Los Alamitos, CA: IEEE.

  23. Gopakumar, A., & Jacob, L. (2008). Localization in wireless sensor networks using particle swarm optimization. In Proceedings of the IET international conference on wireless, mobile and multimedia network (pp. 227–230).

  24. Abdelhadi, M., Anan, M., & Ayyash, M. (2013). Efficient artificial intelligent-based localization algorithm for wireless sensor networks. Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications, 3(5), 10–18.

    Google Scholar 

  25. Tran, D. A., & Nguyen, T. (2008). Localization in wireless sensor networks based on support vector machines. IEEE Transactions on Parallel and Distributed Systems, 19(7), 981–994. doi:10.1109/TPDS.2007.70800.

    Article  Google Scholar 

  26. Samadian, R., & Noorhosseini, M. (2010). Improvements in support vector machine based localization in wireless sensor networks. In Proceedings of the IEEE 5th international symposium on telecommunications (pp. 237–242). Los Alamitos, CA: IEEE.

  27. Yun, S., Lee, J., Chung, W., & Kim, E. (2005). Centroid localization method in wireless sensor networks using TSK fuzzy modeling. In Proceedings of the 2007 international symposium on advanced intelligent systems (pp. 971–974).

  28. Larios, D. F., Barbancho, J., Molina, F. J., & León, C. (2012). LIS: Localization based on an intelligent distributed fuzzy system applied to a WSN. Ad Hoc Networks, 10(3), 604–622. doi:10.1016/j.adhoc.2011.11.003.

    Article  Google Scholar 

  29. Kumar, V., Kumar, A., & Soni, S. (2011). A combined Mamdani-Sugeno fuzzy approach for localization in wireless sensor networks. In Proceedings of the international conference and workshop on emerging trends in technology (pp. 798–803). New York: ACM.

  30. Rahman, M. S., Park, Y., & Kim, K. (2009). Localization of wireless sensor network using artificial neural network. In Proceedings of the IEEE international symposium on communications and information technology (pp. 639–642). Los Alamitos, CA: IEEE.

  31. Gholami, M., Cai, N., & Brennan, R. W. (2013). An artificial neural network approach to the problem of wireless sensors network localization. Robotics and Computer-Integrated Manufacturing, 29(1), 96–109. doi:10.1016/j.rcim.2012.07.006.

    Article  Google Scholar 

  32. Yun, S., Lee, J., Chung, W., Kim, E., & Kim, S. (2009). A soft computing approach to localization in wireless sensor networks. Expert Systems with Applications, 36(4), 7552–7561. doi:10.1016/j.eswa.2008.09.064.

    Article  Google Scholar 

  33. Shilton, A., Sundaram, B., & Palaniswami, M. (2008). Ad hoc wireless sensor network localization using support vector regression. In Proceedings of the ICT mobile summit (pp. 10–12).

  34. Yong, W., Xiaobu, X., & Xiaoling, T. (2009). Localization in wireless sensor networks via support vector regression. In Proceedings of the IEEE 3rd international conference on genetic and evolutionary computing (pp. 549–552). Los Alamitos, CA: IEEE.

  35. Lee, J., Chung, W., & Kim, E. (2013). A new kernelized approach to wireless sensor network localization. Information Sciences, 243, 20–38. doi:10.1016/j.ins.2013.04.024.

    Article  MathSciNet  Google Scholar 

  36. So-In, C., Permpol, S., & Rujirakul, K. (2015). Soft computing-based localizations in wireless sensor networks. Pervasive and Mobile Computing, 29, 17–37. doi:10.1016/j.pmcj.2015.06.010.

    Article  Google Scholar 

  37. Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2004). Extreme learning machine: A new learning scheme of feed forward neural networks. In Proceedings of the international joint conference on neural network (pp. 985–990).

  38. Yang, G., Junfa, L., Yiqiang, C., & Xinlong, J. (2014). Constraint online sequential extreme learning machine for lifelong indoor localization system. In Proceedings of the international joint conference on neural networks (pp. 732–738). Los Alamitos, CA: IEEE.

  39. Ababneh, N. (2009). Radio irregularity problem in wireless sensor networks: New experimental results. In Proceedings of the IEEE sarnoff symposium (pp. 1–5). Los Alamitos, CA: IEEE.

  40. Zhou, G., He, T., Krishnamurthy, S., & Stankovic, J. A. (2006). Models and solutions for radio irregularity in wireless sensor networks. ACM Transactions on Sensor Networks, 2(2), 221–262. doi:10.1145/1149283.1149287.

    Article  Google Scholar 

  41. Jinfang, J., Guangjie, H., Huihui, X., Lei, S., & Yan, Z. (2012). A two-hop localization scheme with radio irregularity model in wireless sensor networks. In Proceedings of the IEEE wireless communications and networking conference (pp. 1704–1709). Los Alamitos, CA: IEEE.

  42. Kumar, A., Khosla, A., Saini, J. S., & Sidhu, S. S. (2015). Range-free 3D node localization in anisotropic wireless sensor networks. Applied Soft Computing, 34, 438–448. doi:10.1016/j.asoc.2015.05.025.

    Article  Google Scholar 

  43. Zhou, G., & Yi, T. (2013). Recent developments on wireless sensor networks technology for bridge health monitoring. Mathematical Problems in Engineering, 2013, 1–33. doi:10.1155/2013/947867.

    Google Scholar 

  44. Matic, A., Popleteev, A., Osmani, V., & Mayora-lbarra, O. (2010). FM radio for indoor localization with spontaneous recalibration. Pervasive and Mobile Computing, 6(6), 642–646. doi:10.1016/j.pmcj.2010.08.005.

    Article  Google Scholar 

  45. Gu, S., Yue, Y., Maple, C., & Wu, C. (2012). Fuzzy logic based localization in wireless sensor networks for disaster environments. In Proceedings of the 18th international conference on automation and computing (pp. 1–5). Los Alamitos, CA: IEEE.

  46. Kasun, L. L. C., Zhou, H., Huang, G.-B., & Vong, C. M. (2013). Representational learning with extreme learning machine for big data. IEEE Intelligent Systems, 28(6), 31–34.

    Google Scholar 

  47. Zhang, W., Liu, K., Zhang, W., Zhang, Y., & Gu, J. (2016). Deep neural networks for wireless localization in indoor and outdoor environments. Neurocomputing, 194(19), 279–287. doi:10.1016/j.neucom.2016.02.055.

    Article  Google Scholar 

  48. Félix, G., Siller, M., & Álvarez, E. N. (2016). A fingerprinting indoor localization algorithm based deep learning. In Proceedings of the IEEE international conference on ubiquitous and future networks (pp. 1006–1011). Vienna, Austria: IEEE.

  49. Yu, W., Zhuang, F., He, Q., & Shi, Z. (2015). Learning deep representations via extreme learning machines. Neurocomputing, 149, 308–315. doi:10.1016/j.neucom.2014.03.077.

    Article  Google Scholar 

  50. Zadeh, L. A. (1968). Fuzzy algorithms. Information and Control, 12(2), 94–102. doi:10.1016/S0019-9958(68)90211-8.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program; Department of Computer Science, Faculty of Science, Khon Kaen University; and Khon Kaen University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chakchai So-In.

Ethics declarations

Conflict of interests

The authors declare that there is (no) conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phoemphon, S., So-In, C. & Nguyen, T.G. An enhanced wireless sensor network localization scheme for radio irregularity models using hybrid fuzzy deep extreme learning machines. Wireless Netw 24, 799–819 (2018). https://doi.org/10.1007/s11276-016-1372-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-016-1372-2

Keywords

Navigation