Skip to main content
Log in

A novel scheme inspired by the compute-and-forward relaying strategy for the multiple access relay channel

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper proposes a novel scheme for the slow block fading Gaussian multiple access relay channel inspired by the compute-and-forward (CoF) relaying strategy. The CoF relaying strategy exploits interference to obtain significantly higher rates between users in a network by decoding linear functions of the transmitted messages. Unlike other approaches in the literature, our approach is valid for any number of transmitters and, most importantly, it only requires channel state information at the receiver side, while it still attains similar or higher rates than the other approaches found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. where the channel is assumed to be constant over each coherence time interval and the coherence time is considered to be larger than the code block length (see, e.g., [23, pp. 583–584]).

  2. Recall that the transmitted average energy per complex dimension \(E_s\) is equal for all transmitters.

  3. A practical implementation of the CoF relaying strategy relies on decoding a synchronous linear combination of the transmitted messages. Although perfect synchronization is not feasible, different types of asynchronism and their corresponding performance degradation have been studied in the literature (see, e.g., [31,32,33]).

  4. Observe that the relay also needs to let the destination know the chosen coefficient vector \(\widehat{{{\varvec{\alpha }}}_r}\), which is considered negligible in terms of data rate.

  5. See [40] for a review on the complexity of integer coefficient search methods for CoF proposed in literature.

References

  1. Nazer, B., & Gastpar, M. (2007). Computation over multiple-access channels. IEEE Transactions on Information Theory, 53(10), 3498–3516.

    Article  MathSciNet  MATH  Google Scholar 

  2. Wannstrom, J. (2013). LTE-advanced. http://www.3gpp.org/technologies/keywords-acronyms/97-lte-advanced.

  3. Ahlswede, R., Cai, Ning, Li, S.-Y. R., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory, 46(4), 1204–1216.

    Article  MathSciNet  MATH  Google Scholar 

  4. Kim, S. J., Mitran, P., & Tarokh, V. (2008). Performance bounds for bidirectional coded cooperation protocols. IEEE Transactions on Information Theory, 54(11), 5235–5241.

    Article  MathSciNet  MATH  Google Scholar 

  5. Avestimehr, A. S., Diggavi, S. N., & Tse, D. N. C. (2011). Wireless network information flow: A deterministic approach. IEEE Transactions on Information Theory, 57(4), 1872–1905.

    Article  MathSciNet  MATH  Google Scholar 

  6. Lim, S., Kim, Y.-H., El Gamal, A., & Chung, S.-Y. (2011). Noisy network coding. IEEE Transactions on Information Theory, 57(5), 3132–3152.

    Article  MathSciNet  MATH  Google Scholar 

  7. Nazer, B., & Gastpar, M. (2011). Compute-and-forward: Harnessing interference through structured codes. IEEE Transactions on Information Theory, 57(10), 6463–6486.

    Article  MathSciNet  MATH  Google Scholar 

  8. Insausti, X., Camaró, F., Crespo, P. M., Beferull-Lozano, B., & Gutiérrez-Gutiérrez, J. (2013). Distributed pseudo-gossip algorithm and finite-length computational codes for efficient in-network subspace projection. IEEE Journal of Selected Topics in Signal Processing, 7(2), 163–174.

    Article  Google Scholar 

  9. Song, Y., & Devroye, N. (2013). Lattice codes for the gaussian relay channel: Decode-and-forward and compress-and-forward. IEEE Transactions on Information Theory, 59(8), 4927–4948.

    Article  MathSciNet  MATH  Google Scholar 

  10. Hong, S.-N., & Caire, G. (2013). Compute-and-forward strategies for cooperative distributed antenna systems. IEEE Transactions on Information Theory, 59(9), 5227–5243.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kramer, G., Gastpar, M., & Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 51(9), 3037–3063.

    Article  MathSciNet  MATH  Google Scholar 

  12. Sankar, L., Liang, Y., Mandayam, N. B., & Poor, H. V. (2011). Fading multiple access relay channels: Achievable rates and opportunistic scheduling. IEEE Transactions on Information Theory, 57(4), 1911–1931.

    Article  MathSciNet  MATH  Google Scholar 

  13. Hernaez, M., Crespo, P. M., & Del Ser, J. (2013). On the design of a novel joint network-channel coding scheme for the multiple access relay channel. IEEE Journal on Selected Areas in Communications, 31(8), 1368–1378.

    Article  Google Scholar 

  14. El Soussi, M., Zaidi, A., & Vandendorpe, L. (2014). Compute-and-forward on a multiaccess relay channel: Coding and symmetric-rate optimization. IEEE Transactions on Wireless Communications, 13(4), 1932–1947.

    Article  Google Scholar 

  15. Erez, U., Litsyn, S., & Zamir, R. (2005). Lattices which are good for (almost) everything. IEEE Transactions on Information Theory, 51(10), 3401–3416.

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, C., Silva, D., & Kschischang, F. R. (2013). An algebraic approach to physical-layer network coding. IEEE Transactions on Information Theory, 59(11), 7576–7596.

    Article  MathSciNet  MATH  Google Scholar 

  17. Hern, B., & Narayanan, K. R. (2013). Multilevel coding schemes for compute-and-forward with flexible decoding. IEEE Transactions on Information Theory, 59(11), 7613–7631.

    Article  Google Scholar 

  18. Wei, L., & Chen, W. (2012). Compute-and-forward network coding design over multi-source multi-relay channels. IEEE Transactions on Wireless Communications, 11(9), 3348–3357.

    Article  Google Scholar 

  19. Ordentlich, O., Zhan, J., Erez, U., Gastpar, M., & Nazer, B. (2011). Practical code design for compute-and-forward. In IEEE International Symposium on Information Theory Proceedings (ISIT), 2011 (pp. 1876–1880).

  20. Vem, A., Huang, Y.-C., Narayanan, K. R., & Pfister, H. D. (2014). Multilevel lattices based on spatially-coupled LDPC codes with applications. In IEEE International Symposium on Information Theory (ISIT), 2014 (pp 2336–2340).

  21. Hong, S.-N., & Caire, G. (2011). Quantized compute and forward: A low-complexity architecture for distributed antenna systems. In IEEE Information Theory Workshop (ITW), 2011 (pp. 420–424).

  22. Tunali, N. E., & Narayanan, K. R. (2011). Concatenated signal codes with applications to compute and forward. In IEEE Global Telecommunications Conference (GLOBECOM 2011), 2011 (pp. 1–5).

  23. El Gamal, A., & Kim, Y.-H. (2012). Network information theory. New York, NY: Cambridge University Press.

    Google Scholar 

  24. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  25. Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication., Wiley series in telecommunications Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  26. Nazer, B. (2012). Successive compute-and-forward. In Proceedings of the international Zurich seminar on communications (pp. 103–106).

  27. Tseng, T. Y., Lee, C. P., Lin, S. C., Su, H. J. (2014). Non-orthogonal compute-and-forward with joint lattice decoding for the multiple-access relay channel. In 2014 IEEE Globecom Workshops (GC Wkshps) (pp. 924–929).

  28. Aguerri, I. E., & Zaidi, A. (2016). Lossy compression for compute-and-forward in limited backhaul uplink multicell processing. IEEE Transactions on Communications, 64(12), 5227–5238.

    Article  Google Scholar 

  29. Wei, S., Li, J., Chen, W., Zheng, L., & Su, H. (2015). Design of generalized analog network coding for a multiple-access relay channel. IEEE Transactions on Communications, 63(1), 170–185.

    Google Scholar 

  30. Hejazi, M., Azimi-Abarghouyi, S. M., Makki, B., Nasiri-Kenari, M., & Svensson, T. (2016). Robust successive compute-and-forward over multiuser multirelay networks. IEEE Transactions on Vehicular Technology, 65(10), 8112–8129.

    Article  Google Scholar 

  31. Najafi, H., Damen, M. O., & Hjorungnes, A. (2013). Asynchronous compute-and-forward. IEEE Transactions on Communications, 61(7), 2704–2712.

    Article  Google Scholar 

  32. Zhang, H., Mehta, N. B., Molisch, A. F., Zhang, J., & Dai, S. H. (2008). Asynchronous interference mitigation in cooperative base station systems. IEEE Transactions on Wireless Communications, 7(1), 155–165.

    Article  Google Scholar 

  33. Wei, S. (2007). Diversity multiplexing tradeoff of asynchronous cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 53(11), 4150–4172.

    Article  MathSciNet  MATH  Google Scholar 

  34. Holtzman, J. M., & Zorzi, M. (2006). Advances in wireless communications., The springer international series in engineering and computer science New York: Springer.

    Google Scholar 

  35. Zhang, Y., Chen, H. H., & Guizani, M. (2009). Cooperative wireless communications., Wireless networks and mobile communications Boca Raton: CRC Press.

    Book  Google Scholar 

  36. Song, L., & Shen, J. (2010). Evolved cellular network planning and optimization for UMTS and LTE. Boca Raton: CRC Press.

    Book  Google Scholar 

  37. Braithwaite, C., & Scott, M. (2003). UMTS network planning and development: Design and implementation of the 3G CDMA infrastructure. Amsterdam: Elsevier Science.

    Google Scholar 

  38. Lawler, E. L., & Wood, D. E. (1966). Branch-and-bound methods: A survey. Operations Research, 14(4), 699–719.

    Article  MathSciNet  MATH  Google Scholar 

  39. Wolsey, L. A. (1998). Integer programming. New Jersey: Wiley.

    MATH  Google Scholar 

  40. Liu, W., & Ling, C. (2016). Efficient integer coefficient search for compute-and-forward. IEEE Transactions on Wireless Communications, 15(12), 8039–8050.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xabier Insausti.

Additional information

This work was supported in part by the Spanish Ministry of Economy and Competitiveness through the RACHEL Project (TEC2013-47141-C4-2-R), the CARMEN Project (TEC2016-75067-C4-3-R) and the COMONSENS network (TEC2015-69648-REDC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Insausti, X., Sáez, A. & Crespo, P.M. A novel scheme inspired by the compute-and-forward relaying strategy for the multiple access relay channel. Wireless Netw 25, 665–673 (2019). https://doi.org/10.1007/s11276-017-1583-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1583-1

Keywords

Navigation