Skip to main content
Log in

Mobility analysis of CoMP-based ultra-dense networks with stochastic geometry methods

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

This paper conducts mobility analysis in Coordinated multipoint (CoMP) based ultra-dense networks (UDNs) where channel state information (CSI) is outdated due to feedback delay. To depict the impact of mobility on CoMP-based UDNs, related analyses are carried out from two perspectives. For one thing, we define CoMP handover probability as the probability that the serving cluster doesn’t remain the best candidate during the movement and further give its theoretical expression with stochastic geometry methods. For another, coverage probability is evaluated by considering the effect of outdated CSI caused by mobility. Furthermore, to capture the comprehensive effect of mobility on network performance, we propound the effective coverage probability (ECP) incorporating the above two effects. Numerical results illustrate that with the increase of users’ velocity, CoMP handover probability increases while coverage probability decreases but can be compensated by relatively larger cluster size schemes or denser access points deployment. Also, our proposed performance metric ECP reveals the tradeoff between CoMP handover probability and coverage probability, which depends on cluster size and network sensitivity to handover failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kamel, M., Hamouda, W., & Youssef, A. (2016). Ultra-dense networks: A survey. IEEE Communications Surveys and Tutorials, 18(4), 2522–2545.

    Article  Google Scholar 

  2. Samarakoon, S., Bennis, M., Saad, W., Debbah, M., & Latva-aho, M. (2016). Ultra dense small cell networks: Turning density into energy efficiency. IEEE Journal on Selected Areas in Communications, 34(5), 1267–1280.

    Article  Google Scholar 

  3. Zhou, Y. Q., Liu, L., Du, H. Y., Tian, L., Wang, X. D., & Shi, J. L. (2014). An overview on intercell interference management in mobile cellular networks: From 2g to 5g. In Proceedings of IEEE conference on communication systems (ICCS) (pp. 217–221).

  4. Garcia, V., Zhou, Y. Q., & Shi, J. L. (2014). Coordinated multipoint transmission in dense cellular networks with user-centric adaptive clustering. IEEE Transactions on Wireless Communications, 13(8), 4297–4308.

    Article  Google Scholar 

  5. Peng, M., Li, Y., Jiang, J., Li, J., & Wang, C. (2014). Heterogeneous cloud radio access networks: A new perspective for enhancing spectral and energy efficiencies. IEEE Wireless Communications, 21(6), 126–135.

    Article  Google Scholar 

  6. Rost, P., et al. (2016). Mobile network architecture evolution toward 5G. IEEE Communications Magazine, 54(5), 84–91.

    Article  Google Scholar 

  7. Han, D., Shin, S., Cho, H., Chung, J.-M., Ok, D., & Hwang, I. (2015). Measurement and stochastic modeling of handover delay and interruption time of smartphone real-time applications on lte networks. IEEE Communications Magazine, 53(3), 173–181.

    Article  Google Scholar 

  8. Zhang, H., Jiang, C., & Cheng, J. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Transactions on Wireless Communications, 22(3), 92–99.

    Article  Google Scholar 

  9. Wu, N. E., & Li, H. J. (2013). Effect of feedback delay on secure cooperative networks with joint relay and jammer selection. IEEE Communications Letters, 2(4), 415–418.

    Article  Google Scholar 

  10. Karamshuk, D., Boldrini, C., & Conti, M. (2011). Human mobility models for opportunistic networks. IEEE Communications Magazine, 49(12), 157–165.

    Article  Google Scholar 

  11. Lin, X. Q., Ganti, R., Fleming, P., & Andrews, J. (2013). Towards understanding the fundamentals of mobility in cellular networks. IEEE Transactions on Wireless Communications, 12(4), 1686–1698.

    Article  Google Scholar 

  12. Hong, Y. T., Xu, X. D., Tao, M. L., Li, J. Y., & Svensson, T. (2015). Cross-tier handover analyses in small cell networks: A stochastic geometry approach, in Proceedings of IEEE international conference on communications (ICC).

  13. Bao, W., & Liang, B. (2015). Stochastic geometric analysis of user mobility in heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications, 33(10), 2212–2225.

    Article  Google Scholar 

  14. Sadr, S., & Adve, R. (2015). Handoff rate and coverage analysis in multi-tier heterogeneous networks. IEEE Transactions on Wireless Communications, 14(5), 2626–2638.

    Article  Google Scholar 

  15. Vu, Decreusefond, T., & Martins, P. L. (2012). An analytical model for evaluating outage and handover probability of cellular wireless networks. In Proceedings of wireless personal multimedia communications (WPMC) (pp. 643–647).

  16. Becvar, Z., & Mach, P. (2010). Adaptive hysteresis margin for handover in femtocell networks. In Proceedings of 6th international conference on wireless and mobile communications (ICWMC) (pp. 256–261).

  17. Yusof, A. L., Ya'acob, N., & Ali, M. T. (2013). Hysteresis margin for handover in Long Term Evolution (LTE) network. In Proceedings of 2013 international conference on computing, management and telecommunications (ComManTel) (pp. 426–430).

  18. Vijayan, R., & Holtzman, J. M. (1993). A model for analyzing handoff algorithms [cellular radio]. IEEE Transactions on Vehicular Technology, 42(3), 351–356.

    Article  Google Scholar 

  19. Guidolin, F., Pappalardo, I., Zanella, A., & Zorzi, M. (2014). A markov-based framework for handover optimization in hetnets. In Proceedings of 13th annual mediterranean Ad Hoc networking workshop (MED-HOC-NET) (pp. 134–139).

  20. Fischione, C., Athanasiou, G., & Santucci, F. (2014). Dynamic optimization of generalized least squares handover algorithms. IEEE Transactions on Wireless Communications, 13(3), 1235–1249.

    Article  Google Scholar 

  21. Lin, C. C., Sandrasegaran, K., Zhu, X., & Xu, Z. (2012). “Performance evaluation of capacity based comp handover algorithm for lte-advanced. In Proceedings of 15th International symposium on wireless personal multimedia communications (WPMC),

  22. Xia, Y., Fang, X., Luo, W., et al. (2014). Coordinated of multi-point and bi-casting joint soft handover scheme for high-speed rail. IET Communications, 8(14), 2509–2515.

    Article  Google Scholar 

  23. Nakano A., & Saba, T. (2014). A handover scheme based on signal power of coordinated base stations for comp joint processing systems. In Proceedings of 8th international conference on signal processing and communication systems (ICSPCS).

  24. Boujelben, M., Rejeb S. B., & Tabbane, S. (2015). A novel mobility-based COMP handover algorithm for LTE-A/5G HetNets. In 23rd International conference on software, telecommunications and computer networks (SoftCOM).

  25. Jo, H. S., Sang, Y. J., Xia, P., & Andrews, J. G. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications, 11(10), 3484–3495.

    Article  Google Scholar 

  26. Stoyan, D., Kendall, W. S., & Mecke, J. (1995). Stochastic geometry and its applications (2nd ed.). New York, NY: Wiley.

    MATH  Google Scholar 

  27. Jakes, W. C. (1994). Microwave mobile communications. Piscataway: IEEE Press.

    Book  Google Scholar 

  28. Michalopoulos, D., Suraweera, H., Karagiannidis, G., & Schober, R. (2012). Amplify-and-forward relay selection with outdated channel estimates. IEEE Transactions on Communications, 60(5), 1278–1290.

    Article  Google Scholar 

  29. Zhou, Z. D., & Vucetic, B. (2011). Adaptive coded mimo systems with near full multiplexing gain using outdated csi. IEEE Transactions on Wireless Communications, 10(1), 294–302.

    Article  Google Scholar 

  30. Ferdinand, N., Benevides da Costa, D., & Latva-aho, M. (2013). Effects of outdated csi on the secrecy performance of miso wiretap channels with transmit antenna selection. IEEE Communications Letters, 17(5), 1822–1834.

    Google Scholar 

  31. Tukmanov, A., Boussakta, S., Ding, Z., & Jamalipour, A. (2014). Outage performance analysis of imperfect-csi-based selection cooperation in random networks. IEEE Transactions on Communications, 62(8), 2747–2757.

    Article  Google Scholar 

  32. Liu, M. T., Teng, Y. L., & Song, M. (2015). Performance analysis of coordinated multipoint joint transmission in ultra-dense networks with limited backhaul capacity. IET Electronics Letter, 51(25), 2111–2113.

    Article  Google Scholar 

  33. Peng, M. G., Yan, S., & Poor, H. V. (2014). Ergodic capacity analysis of remote radio head associationsin cloud radio access networks. IEEE Communications Letters, 3(4), 365–368.

    Article  Google Scholar 

  34. Nigam, G., Minero, P., & Haenggi, M. (2014). Coordinated multipoint joint transmission in heterogeneous networks. IEEE Transactions on Communications, 62(11), 4134–4146.

    Article  Google Scholar 

  35. Tanbourgi, R., Singh, S., Andrews, J. G., & Jondral, F. (2014). A tractable model for noncoherent joint-transmission base station cooperation. IEEE Transactions on Wireless Communications, 13(9), 4959–4973.

    Article  Google Scholar 

  36. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals. In D. Zwillinger (Ed.), IEEE communications magazine (7th ed.). New York: Academic.

    Google Scholar 

  37. Lpez-Prez, D., Guvenc, I., & Chu, X. (2012). Theoretical analysis of handover failure and ping-pong rates for heterogeneous networks. In Proceedings of IEEE ICC (pp. 6774–6779).

  38. de Lima, C. H. M., Bennis, M., & Latva-aho, M. (2014). Modeling and analysis of handover failure probability in small cell networks. In Proceedings IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 736–741).

  39. Liu, M. T., Teng, Y. L., & song, M. (2016). Performance analysis of CoMP in ultra-dense networks with limited backhaul capacity. Wireless Personal Communications, 91(1), 51–77.

    Article  Google Scholar 

  40. Simon, M. K., & Alouini, M.-S. (2000). Digital communications over fading channels: A unified approach to performance analysis (1st ed.). New York: Wiley.

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant Nos. 61771072 and 61302081.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengting Liu.

Appendices

Appendix 1

From Fig. 2, considering a typical mobile user initially connected to \({\varPhi _c}\) with distances \(\left\{ {{r_1},{r_2} \ldots {r_n}} \right\}\) and moving to a new location \({O_2}\) with distances \(\left\{ {{R_1},{R_2} \ldots {R_n}} \right\}\), \(A{P_i}\) is able to become the farthest one among the previous cluster when all the other APs stay in the region \({\varUpsilon _n}\) (\({\varUpsilon _n}\mathop = \limits ^\varDelta \odot {O_1}\backslash {S_1}\)) whose boundary is restricted by

$$\begin{aligned} {R_i} > {R_j},1 \le j \le n,j \ne i \end{aligned}$$
(23)

where \({R_k} = {\left( {{r_k}^2 + {v^2} - 2v{r_k}\cos {\omega _k}} \right) ^{\frac{1}{2}}},k = 1,2 \ldots n\) and the conditions in (23) is denoted as \(\mathbb {C}{_i}\) for clarity. Based on the boundary conditions, \({p_{f\_i}}\) can be derived as (24), where \(I\left( \mathbb {C}{_i} \right)\) is the index function that \(\mathbb {C}{_i}\) values 1 if the conditions holds or 0 otherwise.

$$\begin{aligned}{p_{f\_i}}&= \int \limits _{0 < {w_n} < 2\pi } { \ldots \int \limits _{0 < {w_1} < 2\pi }{\int \limits _{0 < {r_1} \ldots < {r_n} < \infty } {I\left( \mathbb {C}{_i} \right) } } } f\left( {{r_1}\ldots {r_n}} \right) \\&\quad \times\, f\left( {{w_1}} \right) \ldots f\left( {{w_n}} \right) d{r_1} \ldots d{r_n}d{w_1} \ldots d{w_n} \end{aligned}$$
(24)

where \(f\left( {{w_i}} \right) = \frac{1}{{2\pi }},i = 1,2 \ldots n\) and the joint distance distribution of \(\left\{ {{r_1},{r_2} \ldots {r_n}} \right\}\) is \(f\left( {{r_1},{r_2}, \ldots ,{r_n}} \right) = {e^{ - \pi {\lambda _a}{r_n}^2}}{\left( {2\pi {\lambda _a}} \right) ^n}{r_1}{r_2} \ldots {r_n}\).

Denote the ranges of \({\omega _i},{r_i},i = 1,2 \ldots n\) restricted by \({R_i} > {R_j},j = 1,2 \ldots n,i \ne j\) as \({D_{ij}}\) and two different cases are considered as follows:

Case 1

When \(i < j\), the boundaries can be determined by

$$\begin{aligned}{R_i}&> {R_j}\\ \quad &\Rightarrow {r_i}^2 + {v^2} - 2v{r_i}\cos {\omega _i}> {r_j}^2 + {v^2} - 2v{r_j}\cos {\omega _j}\\ \quad &\Rightarrow {r_i}^2 - 2v\cos {\omega _i}{r_i} - \left( {{r_j}^2 - 2v{r_j}\cos {\omega _j}} \right) > 0. \end{aligned}$$
(25)

Let \({g_1}\left( {{r_i}} \right) = {r_i}^2 - 2v\cos {\omega _i} \bullet {r_i} - \left( {{r_j}^2 - 2v{r_j}\cos {\omega _j}} \right)\), then we can further solving the quadratic inequality of \({g_1}\left( {{r_i}} \right) > 0\) as

$$\begin{aligned} \mathop {{D_{ij}}}\limits _{(i < j)} = \left\{ \begin{array}{l} {\omega _i} \in ({\varphi _{ij}},2\pi - {\varphi _{ij}}),\mathrm{{ }}{r_i} \in (0, + \infty )\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if{\ }{r_j}< 2v\cos {\omega _j}\\ {\omega _i} \in \left( 0,{\varphi _{ij}}\right) \cup \left( 2\pi - {\varphi _{ij}},2\pi \right) ,{r_i} \in (0,{x_{ij}}^{(1)}) \cup ({x_{ij}}^{(2)}, + \infty )\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if{\ }{r_j} < 2v\cos {\omega _j}\\ {\omega _i} \in \left( {0,2\pi } \right) ,{r_i} \in \left( {x_{ij}}^{(2)}, + \infty \right) \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if{\ }{r_j} > 2v\cos {\omega _j} \end{array} \right. \end{aligned}$$
(26)

with  \({x_{ij}}^{(1),(2)} = v\cos {\omega _p} \mp \sqrt{{{(v\cos {\omega _p})}^2} + ({r_l}^2 - 2v{r_l}\cos {\omega _l})}\), \({\varphi _{ij}} = \arccos (\sqrt{\frac{{2v{r_l}\cos {\omega _l} - {r_l}^2}}{{{v^2}}}} )\) with \(l = \max (i,j),p = \min (i,j)\).

Case 2

When \(i > j\), the boundaries are restricted by

$$\begin{aligned} &{R_i}> {R_j}\\ &\quad \Rightarrow {r_i}^2 + {v^2} - 2v{r_i}\cos {\omega _i} > {r_j}^2 + {v^2} - 2v{r_j}\cos {\omega _j}\\ &\quad \Rightarrow {r_j}^2 - 2v\cos {\omega _j}{r_j} - \left( {{r_i}^2 - 2v{r_i}\cos {\omega _i}} \right) < 0. \end{aligned}$$
(27)

Then we can further solving the quadratic inequality of \({g_1}\left( {{r_j}} \right) < 0\) as

$$\begin{aligned} \mathop {{D_{ij}}}\limits _{(i> j)} = \left\{ \begin{array}{l} {\omega _j} \in \left( {0,2\pi } \right) ,{r_j} \in \left(0,{x_{ij}}^{(2)}\right)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if{\ }{r_i} > 2v\cos {\omega _i}\\ {\omega _j} \in (0,{\varphi _{ij}}) \cup (2\pi - {\varphi _{ij}},2\pi ),{r_j} \in \left({x_{ij}}^{(1)},{x_{ij}}^{(2)}\right)\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ if{\ }{r_i} < 2v\cos {\omega _i} \end{array} \right. \end{aligned}$$
(28)

Note that the ranges of small subscript \({r_i},{w_i},i = 1,2 \ldots n\) are derived by that of with large subscript \({r_j},{w_j},j = 1,2 \ldots n,j \ne i\). In detail, \({r_i},{w_i}\) is restricted by the ranges of \({r_{i + 1}},{w_{i + 1}} \ldots {r_n},{w_n}\) according to (26) and the ranges of \({r_i},{w_i}\) confine \({r_{i - 1}},{w_{i - 1}} \ldots {r_1},{w_1}\) based on (28).

Then based on the boundary conditions \(\mathbb {C}{_i}\) and conditioned on no handoffs, (8) can further derived as

$$\begin{aligned} {p_{f\_i}} = \int \limits _{{D_{i1}} \cap {D_{i2}} \cdots \cap {D_{in}}} {{{\left( {\frac{1}{{2\pi }}} \right) }^n}f\left( {{r_1}, \ldots ,{r_n}} \right) }d{r_1}d{w_1}d{r_2}d{w_2} \ldots d{r_n}d{w_n} \end{aligned}$$
(29)

where \({D_{ii}} = \left\{ \begin{array}{l} {r_1} < {r_2} \cdots < {r_n}\\ {w_k} \in \left[ {0,2\pi } \right] ,k = 1,2 \ldots n \end{array} \right.\)are the default constraints.

Appendix 2

According to (5), a handoff does not occur if there is no other AP closer than the present farthest AP to the user, hence,

$$\begin{aligned}{g_i}&= \int \limits _{0 \,< {w_n} \,< 2\pi } \,{ \ldots \,\int \limits _{0 \,< {w_1} \,< 2\pi }\,{\int \limits _{0 \,< {r_1} \cdots \,< {r_n} < \infty } \,{{e^{ - {\lambda _a}\,{S_2}}}}{I\left( \mathbb {C}{_i} \right) } } } \,f\left( {{r_1}\,\ldots {r_n}} \,\right) \\&\quad \times \, f\left( {{w_1}} \right) \,\ldots \, f\left( {{w_n}} \right) d{r_1} \ldots d{r_n}d{w_1} \,\ldots \, d{w_n} \end{aligned}$$
(30)

where \(I\left( \mathbb {C}{_i} \right)\) is solved in Lemma 1 and the “dangerous area” can be calculated by geometry knowledge as

$$\begin{aligned} {S_2}&= {S_{circle{O_2}}} - {S_{lap}}\\&= \pi {R_i}^2 - \left( {{S_{\sec torA\,{O_1}\,B}} \,+ \,{S_{\sec torA\,{O_2}\,B}} - {S_{quadrangleA\,{O_1}\,B\,{O_2}}}} \right) \\&= \pi {R_i}^2 - \left( {{\beta _i}{r_n}^2 \,+ \,{\varphi _i}{R_i}^2 - v{r_n}\sin {\beta _i}} \right) \\&=\left( {\pi - {\varphi _i}} \right) {R_i}^2- {\beta _i}{r_n}^2 \,+\, v{r_n}\sin {\beta _i} \end{aligned}$$
(31)

with \({\varphi _i} = \pi \, - \,{\beta _i} - {\sin ^{ - 1}}\left( {v\sin {\beta _i}/{R_i}} \right)\) and \({\beta _i} = {\cos ^{ - 1}}\left( {{r_n}^2 + {v^2} - {R_i}^2} \right) /2v{r_n}\).

Combining \(I\left( \mathbb {C}{_i} \right)\) and the condition that no AP appears in \({S_2}\), we can further derive \({g_i}\) as

$$\begin{aligned} {g_i} = \int \limits _{{D_{i1}} \cap {D_{i2}} \cdots \cap {D_{in}}} {{{\left( {\frac{1}{{2\pi }}} \right) }^n}{{e^{ - {\lambda _a}{S_2}}}}f\left( {{r_1}, \ldots ,{r_n}} \right) }d{r_1}d{w_1}d{r_2}d{w_2} \ldots d{r_n}d{w_n}. \end{aligned}$$
(32)

Finally, the overall non-handover probability can be got by simply adding the mutually exclusive n cases as (9).

Appendix 3

Since \({h_{i,m}}\) is zero and complex Gaussian distribution, i.e., \({h_{i,m}} \sim {{\mathcal {C}}}{{\mathcal {N}}}\left( {0,{\mu } } \right)\), \({\chi _i} = {\chi _{i,m}} = {\left| {{h_{i,m}}} \right| ^2}\)(subscript m is removed for simplicity) contributes to Rayleigh distribution, i.e., \({\chi _i} \sim \exp \left( {\frac{1}{\mu }} \right)\). Thus, the CDF and PDF of \({\chi _i}\) can be expressed respectively as

$$\begin{aligned} {f_{{\chi _i}}}\left( y \right) = \frac{1}{\mu }{e^{ - \frac{y}{\mu }}},\end{aligned}$$
(33a)
$$\begin{aligned} {F_{{\chi _i}}}\left( y \right) = 1 - {e^{ - \frac{y}{\mu }}}. \end{aligned}$$
(33b)

In turn, the CDF of \({\phi _i}, i = 1,2 \ldots n\) can be derived as

$$\begin{aligned} {F_{{\phi _i}}}\left( z \right) = \mathbb {P}\left( {{\phi _i} \le z} \right) = \mathbb {P}\left( {\left( {\mathop {\max }\limits _{i = 1,2 \ldots M} {{\left| {{h_i}} \right| }^2}} \right) \le z} \right) \mathop = \limits ^{\left( a \right) } {F_{{\chi _i}}}^M\left( z \right) \end{aligned}$$
(34)

where (a) follows that the sub-channels are independent from each other. Then the PDF can be derived from the concept of probability theory, yielding

$$\begin{aligned} {f_{{\phi _i}}}\left( z \right)&= \frac{{d{F_{{\phi _i}}}\left( z \right) }}{{dz}} = M{f_{{\chi _i}}}\left( z \right) {F_{{\chi _i}}}{\left( z \right) ^{M - 1}} = M\frac{1}{\mu }{e^{ - \frac{z}{\mu }}}{\left( {1 - {e^{ - \frac{z}{\mu }}}} \right) ^{M - 1}}\\&= \frac{M}{\mu }{e^{ - \frac{z}{\mu }}}{\sum \limits _{k = 0}^{M - 1} {\left( {\begin{array}{c} {M - 1}\\ k \end{array}} \right) \left( { - {e^{ - \frac{z}{\mu }}}} \right) } ^k}\\ &=\mathrm{{ }}\frac{M}{\mu }{\sum \limits _{k = 0}^{M - 1} {\left( {\begin{array}{c} {M - 1}\\ k \end{array}} \right) \left( { - 1} \right) } ^k}{e^{ - \frac{{\left( {k + 1} \right) z}}{\mu }}}. \end{aligned}$$
(35)

Then according to the concept of probability theory, the PDF of \({{\tilde{\phi }} _i},i = 1,2 \ldots n\) can be attained as

$$\begin{aligned} {f_{{{{\tilde{\phi }} }_i}}}\left( x \right)&= \int _0^\infty {{f_{{{{\tilde{\phi }} }_i},{\phi _i}}}\left( {x,y} \right) } dy = \int _0^\infty {{f_{{{{\tilde{\phi }} }_i}\left| {{\phi _i}} \right. }}\left( {x\left| y \right. } \right) {f_{{\phi _i}}}\left( y \right) } dy \\&= \int _0^\infty {\frac{{{f_{{{{\tilde{\chi }} }_i},{\chi _i}}}\left( {x,y} \right) }}{{{f_{{\chi _i}}}\left( y \right) }}{f_{{\varphi _i}}}\left( y \right) } dy. \end{aligned}$$
(36)

In the following, \({f_{{{{\tilde{\chi }} }_i},{\chi _i}}}\left( {x,y} \right)\) can be obtained by considering the special case of \({m_B} = 1\) (the fading parameter of Nakagami-m model) in [40, Eq.(6.2)]

$$\begin{aligned} {f_{{{{\tilde{\chi }} }_i},{\chi _i}}}\left( {x,y} \right) = \frac{1}{{\left( {1 - \rho } \right) {\mu ^2}}}{e^{ - \frac{{x + y}}{{\mu \left( {1 - \rho } \right) }}}} \times {I_0}\left( {\frac{{2\sqrt{\rho xy} }}{{\mu \left( {1 - \rho } \right) }}} \right) \end{aligned}$$
(37)

where \({I_0}\left( \bullet \right)\) denotes the \(0_{th}\) order modified Bessel function of first kind [36, Eq. (8.406.3)] and can be written as

$$\begin{aligned} {I_0}\left( z \right) = {j^{ - n}}{J_n}\left( {jz} \right) \left| {_{n = 0}} \right. = {J_0}\left( {jz} \right) . \end{aligned}$$
(38)

Then \({f_{{{{\tilde{\phi }} }_i}}}\left( x \right)\) can be got first by substituting (38) into (37) and then by plugging (33a), (35) and (37) into (36) as

$$\begin{aligned}{f_{{{{\tilde{\phi }} }_i}}}\left( x \right) \\ = \frac{M}{{\left( {1 - \rho } \right) {\mu ^2}}}{e^{ - \frac{x}{{\mu \left( {1 - \rho } \right) }}}}{\sum \limits _{k = 0}^{M- 1} {\left( {\begin{array}{c} {M-1}\\ k \end{array}} \right) \left( { - 1} \right) }^k}\int _0^\infty {{e^{ - \frac{{1 + k - k\rho }}{{\mu \left( {1 - \rho } \right) }}y}}{J_0}\left( {2 \,\times \, j\frac{{\sqrt{\rho x} }}{{\mu \left( {1 - \rho } \right) }} \bullet \sqrt{y} } \right) } dy. \end{aligned}$$
(39)

Using [36, Eq. (6.643.4)], (39) can be further derived as

$$\begin{aligned} {f_{{{{\tilde{\phi }} }_i}}}\left( x \right) &= {\sum \limits _{k = 0}^{M-1} {\left( {\begin{array}{c} {M-1}\\ k \end{array}} \right) \left( { - 1} \right) }^k}\frac{M}{{\mu \left( {1 + k - k\rho } \right) }}{e^{ - \frac{{1 + k}}{{\mu \left( {1 + k - k\rho } \right) }}x}}\\&\quad \times \, L_0^0\left( { - \frac{{\rho x}}{{\mu \left( {1 - \rho } \right) \left( {1 + k - k\rho } \right) }}} \right) . \end{aligned}$$
(40)

Since \(L_0^0\left( x \right) = 1\) [36, Eq. (8.970.1)], we can finally get

$$\begin{aligned} {f_{{{{\tilde{\phi }} }_i}}}\left( x \right) \mathrm{{ = }}M{\sum \limits _{k = 0}^{M-1} {\left( {\begin{array}{c} {M-1}\\ k \end{array}} \right) \left( { - 1} \right) } ^k}{\eta _k}{e^{ - {\eta _k}\left( {1 + k} \right) x}} \end{aligned}$$
(41)

where \({\eta _k} = \frac{1}{{\mu \left( {1 + k - k\rho } \right) }}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Teng, Y. & Song, M. Mobility analysis of CoMP-based ultra-dense networks with stochastic geometry methods. Wireless Netw 25, 917–932 (2019). https://doi.org/10.1007/s11276-017-1609-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1609-8

Keywords

Navigation