Skip to main content
Log in

Impact of relative speed on node vicinity dynamics in VANETs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Communication protocols generally rely on the existence of very long multihop paths to reach distant nodes. They disregard, however, how often such paths indeed occur, and how long they persist, especially in highly dynamic mobile networks. In this direction, this paper evaluates quantitatively the influence of node relative speed on path establishment and maintenance, using real and synthetic vehicular network traces. We propose a methodology for vehicular network analysis where both relative speeds and hop distances are used as parameters to characterize node vicinity. Results show that contact opportunities highly depend on the relative speed and the hop distance between nodes. In sparser scenarios, the number of contacts between nodes separated by more than 3 hops or even between neighbors with relative speed above 40 km/h is negligible. This confirms the intuition that contacts at lower relative speeds and at few hop distances happen more often. In addition, contacts last longer as the number of hops between nodes decreases. Nevertheless, we can still find multihop paths able to transmit messages at high relative speeds, even though less often. We also demonstrate that relative speeds reduce the number of useful contacts more severely when compared to the hop distance. For last, we show that it is possible to increase the number of successful packet transmissions by simply applying the outcomes of this work, without any sophisticated model, avoiding the waste of resources, such as energy and bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Olariu, S., Yan, G., & Salleh, S. (2010). A probabilistic routing protocol in VANET. IJMCMC, 2(4), 21.

    Google Scholar 

  2. Belblidia, N., Sammarco, M., Costa, L. H. M. K., & de Amorim, M. D. (2015). EPICS: Fair opportunistic multi-content dissemination. IEEE Transactions on Mobile Computing, 14(9), 1847.

    Article  Google Scholar 

  3. Sommer, C., & Dressler, F. (2008). Progressing toward realistic mobility models in VANET simulations. IEEE Communications Magazine, 46(11), 132.

    Article  Google Scholar 

  4. Harri, J., Filali, F., & Bonnet, C. (2009). Mobility models for vehicular ad hoc networks: A survey and taxonomy. IEEE Communications Surveys and Tutorials, 11(4), 19.

    Article  Google Scholar 

  5. Gaikwad, D. S., & Zaveri, M. (2011). VANET routing protocols and mobility models: A survey. In D. C. Wyld, M. Wozniak, N. Chaki, N. Meghanathan, D. Nagamalai (Eds.), Trends in Network and Communications. Communications in Computer and Information Science (pp. 334–342). Berlin, Heidelberg: Springer.

  6. Spaho, E., Barolli, L., Mino, G., Xhafa, F., & Kolici, V. (2011). VANET simulators: A survey on mobility and routing protocols. In Proceedings of BWCCA ’11 (pp. 1–10).

  7. Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, 50(4), 217.

    Article  Google Scholar 

  8. Madi, S., & Al-Qamzi, H. (2013). A survey on realistic mobility models for vehicular ad hoc networks (VANETs). In Proceeings of ICNSC ’13 (pp. 333–339).

  9. Conan, V., Leguay, J., & Friedman, T. (2007). Characterizing pairwise inter-contact patterns in delay tolerant networks. In Proceedings of Autonomics ’07 (pp. 19:1–19:9).

  10. Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A. L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779. https://doi.org/10.1038/nature06958.

    Article  Google Scholar 

  11. Passarella, A., & Conti, M. (2011). Characterising aggregate inter-contact times in heterogeneous opportunistic networks. In Proceedings of NETWORKING’11 (pp. 301–313)

  12. Rezende, C. G., Pazzi, R. W., & Boukerche, A. (2009). An efficient neighborhood prediction protocol to estimate link availability in VANETs. In Proceedings of MobiWAC ’09 (pp. 83–90).

  13. Taleb, T., Sakhaee, E., Jamalipour, A., Hashimoto, K., Kato, N., & Nemoto, Y. (2007). A stable routing protocol to support ITS services in VANET networks. IEEE Transactions on Vehicular Technology, 56(6), 3337.

    Article  Google Scholar 

  14. Gerharz, M., de Waal, C., Frank, M., & Martini, P. (2002). Link stability in mobile wireless ad hoc networks. In Proceedings of LCN ’02 (pp. 30–39).

  15. Menouar, H., Lenardi, M., & Filali, F. (2007). Movement prediction-based routing (MOPR) concept for position-based routing in vehicular networks. In Proceedings of VTC ’07 (pp. 2101–2105).

  16. Barghi, S., Benslimane, A., & Assi, C. (2009). A lifetime-based routing protocol for connecting VANETs to the internet. In Proceedings of WoWMoM ’09 (pp. 1–9).

  17. Phe-Neau, T., Dias de Amorim, M., & Conan, V. (2012). Vicinity-based DTN characterization. In Proceedings of MobiOpp ’12 (pp. 37–44).

  18. Phe-Neau, T., Dias de Amorim, M., Campista, M. E. M., & Conan, V. (2013). Examining vicinity dynamics in opportunistic networks. In Proceedings of PM2HW2N ’13 (pp. 153–160).

  19. Hoque, M. A., Hong, X., & Dixon, B. (2014). Efficient multi-hop connectivity analysis in urban vehicular networks. Vehicular Communications, 1(2), 78.

    Article  Google Scholar 

  20. Piorkowski, M., Sarafijanovic-Djukic, N., & Grossglauser, M. (2009). CRAWDAD data set epfl/mobility (v. 2009-02-24). [Online]. Available Jan, 2017 http://crawdad.org/epfl/mobility/.

  21. Jetcheva, J. G., Hu, Y. C., PalChaudhuri, S., Saha, A. K., & Johnson, D. B. (2003). CRAWDAD data set rice/ad_hoc_city (v. 2003-09-11). [Online]. Available Jan, 2017 http://crawdad.org/rice/ad_hoc_city/.

  22. Uppoor, S., & Fiore, M. (2011). Large-scale urban vehicular mobility for networking research. In Proceedings of VNC ’11 (pp. 62–69).

  23. Hartenstein, H., Laberteaux, K., & Ebrary, I. (2010). VANET: Vehicular applications and inter-networking technologies. Hoboken: Wiley Online Library.

    Book  Google Scholar 

  24. Wang, X., Wang, C., Cui, G., & Yang, Q. (2015). Practical link duration prediction model in vehicular ad hoc networks. International Journal of Distributed Sensor Networks, 11(3), 216934. https://doi.org/10.1155/2015/216934.

    Article  Google Scholar 

  25. Bazzi, A., Masini, B. M., Zanella, A., & Pasolini, G. (2015). IEEE 802. 11p for cellular offloading in vehicular sensor networks. Computer Communications, 60, 97–108.

    Article  Google Scholar 

  26. He, J., Cai, L., Pan, J., & Cheng, P. (2017). Delay analysis and routing for two-dimensional vanets using carry-and-forward mechanism. IEEE Transactions on Mobile Computing, 16(7), 1830.

    Article  Google Scholar 

  27. Shelly, S., & Babu, A. V. (2017). Link residual lifetime-based next hop selection scheme for vehicular ad hoc networks. EURASIP Journal on Wireless Communications and Networking, 2017(1), 23:1.

    Article  Google Scholar 

  28. Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349.

    Article  Google Scholar 

  29. Fathian, M., & Jafarian-Moghaddam, A. R. (2015). New clustering algorithms for vehicular ad-hoc network in a highway communication environment. Wireless Networks, 21(8), 2765.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES, CNPq, and FAPERJ for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dianne S. V. Medeiros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medeiros, D.S.V., Hernandez, D.A.B., Campista, M.E.M. et al. Impact of relative speed on node vicinity dynamics in VANETs. Wireless Netw 25, 1895–1912 (2019). https://doi.org/10.1007/s11276-017-1654-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-017-1654-3

Keywords

Navigation