Skip to main content
Log in

Investigation on outage capacity of spectrum sharing system using CSI and SSI under received power constraints

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this paper, we have investigated the outage capacity of secondary user for opportunistic spectrum sharing under the joint peak and average received power constraints for Rayleigh fading environment. Under this communication scenario, on detecting the licensed primary user inactive, the secondary unlicensed users transmit data/information in the licensed frequency band such that no or minimum interference may be experienced by the primary user. The soft sensing information (SSI) and secondary user’s channel state information is used to obtain the closed form expressions for the ergodic and outage capacity using truncated channel inversion with fixed rate technique under the joint peak and average received power constraints. Numerically simulated results are provided to demonstrate the improvement in outage capacity of secondary user under the proposed spectrum sharing scheme. Moreover, the proposed scheme is also compared with other conventional spectrum sharing schemes to illustrate the benefits of SSI and received power constraints on the outage capacity of secondary user.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mitola, J., III. (2000). Cognitive radio: An integrated agent architecture for software defined radio. Ph.D. Dissertation, KTH, Sweden.

  2. Bala, I., Bhamrah, M. S., & Singh, G. (2014). Analytical modeling of ad hoc cognitive radio environment for optimum power control. International Journal of Computer Applications, 92(7), 19–22.

    Article  Google Scholar 

  3. Biglieri, E., Proakis, J., & Shamai, S. (1998). Fading channels: Information theoretic and communications aspects. IEEE Transactions on Information Theory, 44(6), 2619–2692.

    Article  MathSciNet  MATH  Google Scholar 

  4. Goldsmith, A. J., & Varaiya, P. (1997). Capacity of fading channels with channel side information. IEEE Transactions on Information Theory, 43(6), 1986–1992.

    Article  MathSciNet  MATH  Google Scholar 

  5. Khojastepour, M. A., & Aazhang, B. (2004). The capacity of average and peak power constrained fading channels with channel side information. In Proc. IEEE Wireless Commun. and Networking Conference (WCNC’04), pp. 77–82.

  6. Ghasemi, A., & Sousa, E. S. (2004). Capacity of fading channels under spectrum-sharing constraints. In Proc. IEEE Int. Conf. Commun. (ICC’06), pp. 4373–4378.

  7. Gastpar, M. (2004). On capacity under received-signal constraints. In Proc. 42nd Annu. Allerton Conf. on Communi. Control and Comp., pp. 1322–1331.

  8. Musavian, L., & Aissa, S. (2007). Ergodic and outage capacities of spectrum sharing systems in fading channels. In Proc. IEEE Global Telecomm. Conf. (GLOBECOM’07), pp. 3327–31.

  9. Asghari, V., & Aissa, S. (2008). Resource sharing in cognitive radio systems: Outage capacity and power allocation under soft sensing. In Proc. IEEE Global Telecomm. Conf. (GLOBECOM’08), pp. 1–5.

  10. Bala, I., Bhamrah, M. S., & Singh, G. (2017). Capacity in fading environment based on soft sensing information under spectrum sharing constraints. Wireless Networks, 23(2), 519–531.

    Article  Google Scholar 

  11. Bala, I., Bhamrah, M. S., & Singh, G. (2017). Rate and power optimization under received-power constraints for opportunistic spectrum-sharing communication. Wireless Personal Communication, 96(4), 5667–5685.

    Article  Google Scholar 

  12. Srinivasa, S., & Jafar, S. A. (2010). Soft sensing and optimal power control for cognitive radio. IEEE Transactions on Wireless Communications, 9(12), 3638–3649.

    Article  Google Scholar 

  13. Whiting, P., & Yeh, E. (2006). Broadcasting over uncertain channels with decoding delay constraints. IEEE Transactions on Information Theory, 52(3), 904–921.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kruys, J., & Qian, L. (2011). Sharing RF spectrum with commodity wireless technologies. New York: Springer.

    Book  Google Scholar 

  15. Hanly, S., & Tse, D. (1998). Multi-access fading channels—Part II: delay limited capacities. IEEE Transactions on Information Theory, 44(7), 2816–2831.

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, Y., Yu, G., Zhang, Z., Chen, H. H., & Qiu, P. (2008). On cognitive radio networks with opportunistic power control strategies in fading channels. IEEE Transactions on Wireless Communications, 7(7), 2752–2761.

    Article  Google Scholar 

  17. Son, K., Jung, B. C., Chong, S., & Sung, D. K. (2013). Power allocation policies with full and partial inter-system channel state information for cognitive radio networks. Wireless Networks, 19(1), 99–113.

    Article  Google Scholar 

  18. Smith, P. J., Dmochowski, P. A., Suraweera, H. A., & Shafi, M. (2013). The effects of limited channel knowledge on cognitive radio system capacity. IEEE Transactions on Vehicular Technology, 62(2), c927–c933.

    Article  Google Scholar 

  19. Jian, Y., & Zhao, H. (2015). Throughput enhancement of cognitive radio networks through imperfect spectrum predictions. In Proc. 28th IEEE Canadian Conference on Electrical and Computer Engineering Halifax, Canada, pp. 1374–1378.

  20. Zhang, X., Xing, J., Yan, Z., Gao, Y., & Wang, W. (2013). Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Communications Letters, 17(1), 27–30.

    Article  Google Scholar 

  21. Li, Q., & Xu, D. (2015). Power allocation of two users cognitive multiple access channels under primary user outage constraint. In Proc. Int. Conf. on Wireless Commun. and Signal Process. (WCSP), Nanjing, pp. 1–5.

  22. Xu, D., & Li, Q. (2014). Ergodic capacity and outage probability optimization for secondary user in cognitive radio networks under interference outage constraint. International Journal of Electronics and Communications, 68(8), 747–755.

    Article  MathSciNet  Google Scholar 

  23. Ercan, A. O. (2016). Analysis of asynchronous cognitive radio system with imperfect sensing and bursty primary user traffic. International Journal on Signal, Image and Video Process, 10(3), 593–600.

    Article  MathSciNet  Google Scholar 

  24. Zhu, J., Liu, J., Zhou, Z., & Li, L. (2016). Resource allocation algorithm for multi-cell cognitive radio networks with imperfect spectrum sensing and proportional fairness. ETRI Journal, 38(6), 1153–1162.

    Article  Google Scholar 

  25. Musavian, L., & Aissa, S. (2009). Capacity and power allocation for spectrum-sharing communications in fading channels. IEEE Transactions on Wireless Communications, 8(1), 148–156.

    Article  Google Scholar 

  26. Asghari, V., & Aïssa, S. (2010). Spectrum sharing in cognitive radio systems: Service oriented capacity and power allocation. IET Communications, 6(8), 889–899.

    Article  MathSciNet  MATH  Google Scholar 

  27. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge Univ. Press.

    Book  Google Scholar 

  28. Abramowitz, M., & Stegun, I. A. (1997). Handbook of mathematical functions: With formulas, graphs, and mathematical tables (9th ed.). New York: Dover.

    MATH  Google Scholar 

  29. Kang, X., Liang, Y. C., Nallanathan, A., Garg, H. K., & Jhang, R. (2009). Optimal power allocation for fading channels in cognitive radio networks: Ergodic capacity and outage capacity. IEEE Transactions on Wireless Communications, 8(2), 940–950.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are sincerely thankful to the anonymous reviewers for their critical comments and suggestions to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indu Bala.

Appendix

Appendix

For the optimum power allocation under constraints in Eqs. (4) and (5), we have used Lagrangian optimization technique. Thus, for the maximization problem in Eq. (7), the Lagrangian objective function \(L_{{C_{er} }}\) is expressed as:

$$\begin{aligned} L_{{C_{er} }} = & \left[ {P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right), \lambda_{1} , \lambda_{2} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right),\lambda_{3} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)} \right] = \bar{\alpha } E_{{{\raise0.7ex\hbox{${\gamma_{s} ,\gamma_{sp} ,\xi }$} \!\mathord{\left/ {\vphantom {{\gamma_{s} ,\gamma_{sp} ,\xi } {PU\_off}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${PU\_off}$}}}} \left[ {\log_{2} \left( {1 + \frac{{P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) \gamma_{s} }}{{N_{0} B}}} \right)} \right] \\ & + \;\alpha E_{{{\raise0.7ex\hbox{${\gamma_{s} ,\gamma_{sp} ,\xi }$} \!\mathord{\left/ {\vphantom {{\gamma_{s} ,\gamma_{sp} ,\xi } {PU\_on}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${PU\_on}$}}}} \left[ {\log_{2} \left( {1 + \frac{{P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) \gamma_{s} }}{{N_{0} B}}} \right)} \right] - \lambda_{1} E_{{{\raise0.7ex\hbox{${\gamma_{s} ,\gamma_{sp} ,\xi }$} \!\mathord{\left/ {\vphantom {{\gamma_{s} ,\gamma_{sp} ,\xi } {PU\_on}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${PU\_on}$}}}} \left[ {P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)\gamma_{sp} - P_{Avg} } \right] \\ & + \;\mathop \int \limits_{0}^{\infty } \mathop \int \limits_{0}^{\infty } \mathop \int \limits_{0}^{\infty } \lambda_{2} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)\gamma_{sp} d\gamma_{s} d\gamma_{sp} d\xi - \mathop \int \limits_{0}^{\infty } \mathop \int \limits_{0}^{\infty } \mathop \int \limits_{0}^{\infty } \lambda_{2} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)\left[ {\left\{ {P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)\gamma_{sp} } \right\}_{PU\_on} } \right. \\ & - \left. {P_{Peak} } \right]d\gamma_{s} d\gamma_{sp} d\xi . \\ \end{aligned}$$
(28)

By taking derivative of Eq. (28) with respect to \(P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)\) and setting it to zero yields:

$$\left( {\bar{\alpha } f_{off} \left( \xi \right) + \alpha f_{on} \left( \xi \right)} \right)\left( {\frac{{\gamma_{s} }}{{P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)\gamma_{s} + N_{0} B}}} \right) - \lambda_{1} f_{on} \left( \xi \right)\gamma_{sp} + \lambda_{2} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) {-}\lambda_{3} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) \gamma_{sp} = 0.$$
(29)

Since the objective function \(L_{{C_{er} }}\) is a concave function of \(P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)\), the Karush–Kuhn–Tucker (KKT) conditions are necessary and sufficient to find the optimum solution for Eq. (29). These conditions are:

$$\lambda_{1} E_{{{\raise0.7ex\hbox{${\gamma_{s} ,\gamma_{sp} ,\xi }$} \!\mathord{\left/ {\vphantom {{\gamma_{s} ,\gamma_{sp} ,\xi } {PU\_On}}}\right.\kern-0pt} \!\lower0.7ex\hbox{${PU\_On}$}}}} \left[ {\left( {P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)\gamma_{sp} } \right)_{PU\_On} - P_{Avg} } \right] = 0,$$
(30)
$$\lambda_{2} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) = 0,$$
(31)
$$\lambda_{3} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)\left( {\left( {\left( {P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)\gamma_{sp} } \right)_{PU\_On} - P_{Peak} } \right)} \right) = 0.$$
(32)

Case I Suppose \(P^{*} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) = 0\) for some values of \(\gamma_{s} ,\gamma_{sp}\) and \(\xi\). In this case, Eq. (32) requires \(\lambda_{3} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) = 0\) and Eq. (31) implies that \(\lambda_{2} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) \ge 0\) which, when substituted into Eq. (29), yield

$$\left( {\bar{\alpha } f_{off} \left( \xi \right) + \alpha f_{on} \left( \xi \right)} \right)\left( {\frac{{\gamma_{s} }}{{N_{0} B}}} \right) - \lambda_{1} f_{on} \left( \xi \right)\gamma_{sp} \le 0,$$
$$\frac{{\gamma_{u} \left( \xi \right) }}{{\lambda_{1} N_{0} B}} \le \frac{{\gamma_{sp} }}{{\gamma_{s} }}.$$
(33)

Case II Suppose \(P^{*} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) = \frac{{P_{Peak} }}{{\gamma_{sp} }}\) for some values of \(\gamma_{s} ,\gamma_{sp}\) and \(\xi\). In this case, Eq. (31) requires \(\lambda_{2} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) = 0\) and Eq. (32) implies that \(\lambda_{3} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) \ge 0\) which, when substituted into Eq. (29), yield

$$\gamma_{u} \left( \xi \right) \left( {\frac{{\gamma_{s} }}{{P_{Peak} \frac{{\gamma_{s} }}{{\gamma_{sp} }} + N_{0} B}}} \right) - \lambda_{1} \gamma_{sp} \ge 0,$$
$$\frac{{\gamma_{v} \left( \xi \right)}}{{N_{0} B}} \ge \frac{{\gamma_{sp} }}{{\gamma_{s} }}.$$
(34)

Case III\(0 \le P^{*} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) = \frac{{P_{Peak} }}{{\gamma_{sp} }}\) for some values of \(\gamma_{s} ,\gamma_{sp}\) and \(\xi\). It requires \(\lambda_{2} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) = \lambda_{3} \left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right) = 0\) which, when substituted into Eq. (29), yield

$$\gamma_{u} \left( \xi \right) \left( {\frac{{\gamma_{s} }}{{P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right)\gamma_{s} + N_{0} B }}} \right){-} \lambda_{1} \gamma_{sp} = 0,$$
$$\frac{{\gamma_{u} \left( \xi \right) }}{{\lambda_{1} \gamma_{sp} }} - \frac{{N_{0} B}}{{\gamma_{s} }} = P\left( {\gamma_{s} ,\gamma_{sp} ,\xi } \right).$$
(35)

Finally, according to the results in Eqs. (33), (34) and (35), the power allocation policy that maximizes the ergodic capacity expression in Eq. (6), can be expressed according to Eq. (8), thus concluding the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bala, I., Bhamrah, M.S. & Singh, G. Investigation on outage capacity of spectrum sharing system using CSI and SSI under received power constraints. Wireless Netw 25, 1047–1056 (2019). https://doi.org/10.1007/s11276-018-1666-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1666-7

Keywords

Navigation