Skip to main content
Log in

Take your time, get it closer: content dissemination within mobile pedestrian crowds

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The explosion of traffic demands in the edge of the Internet, mostly by mobile users, is putting under pressure current networking infrastructures. This is particularly acute when huge amounts of users and active wireless devices gather in reduced geographical spaces, increasing the risk of exceeding planned capacity of deployed infrastructure. This trend motivates research on edge computing, and in particular, on mechanisms to offload or address locally part of the user injected traffic at the access infrastructure, thus reducing the need of Internet requests and retrievals. This paper concentrates on the ability of mobile crowds –and corresponding access networks—to fulfill content requests originated within the mesh, with minimal intervention of the Internet infrastructure. Simple heuristics are revisited, proposed, discussed and evaluated to improve autonomous content discovery and dissemination within high-density, low-mobility crowds, by combining notions already explored for MANET routing: deliberate jittering and autonomous distance-based overlay pruning. Results over synthetic networks and real mobility traces indicate that these mechanisms improve efficiency and quality of content request discoveries, by reducing significantly collisions and increasing stability of discovered paths in dense pedestrian crowds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Except for short-distance links under TEB-D, i.e., links \(xy \in V\) such that \(\text {dist}(x,y)<1\) m.

References

  1. Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs, N. H., & Braynard, R. L. (2009). Networking named content. In ACM CoNEXT’09.

  2. Lee, J., Rhee, I., Lee, J., Chong, S., & Yi, Y. (2010). Mobile data offloading: How much can wifi deliver? In ACM CoNEXT.

  3. Zhang, J., Xiong, T., & Lou, W. (2014). Community clinic: Economizing mobile cloud service cost via cloudlet group. In MASS 2014.

  4. Shi, W., Cao, J., Zhang, Q., Li, Y., & Xu, L. (2016). Edge computing: Vision and challenges. IEEE Internet of Things Journal, 3, 637–646.

    Article  Google Scholar 

  5. Beck, M. T., Werner, M., Feld, S., & Schimper, T. (2014). Mobile edge computing: A taxonomy. In Proceedings of the AFIN’2014.

  6. Li, Y., Qian, M., Jin, D., Hui, P., Wang, Z., & Chen, S. (2014). Multiple mobile data offloading through disruption tolerant networks. IEEE Transactions on Mobile Computing, 13, 1579–1596.

    Article  Google Scholar 

  7. Chen, X., Wu, J., Cai, Y., Zhang, H., & Chen, T. (2015). Energy-efficient oriented traffic offloading in wireless networks: A brief survey and a learning approach for heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 33, 627–640.

    Article  Google Scholar 

  8. Wang, L., & Wu, H. (2014). Fast pairing of device-to-device link underlay for spectrum sharing with cellular users. IEEE Communications Letters, 18, 1803–1806.

    Article  Google Scholar 

  9. Andreev, S., Pyattaev, A., Johnsson, K., Galinina, O., & Koucheryavy, Y. (2014). Cellular traffic offloading onto network-assisted device-to-device connections. IEEE Communications Magazine, 52(4), 20–31.

    Article  Google Scholar 

  10. Fodor, G., Dalman, E., Mildh, G., Parkvall, S., Reider, N., Milós, G., et al. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine, 50(3), 170–177.

    Article  Google Scholar 

  11. Kaufman, B., Lilleberg, J., & Aazhang, B. (2013). Spectrum sharing scheme between cellular users and ad-hoc device-to-device users. IEEE Transactions on Wireless Communications, 12, 1038–1049.

    Article  Google Scholar 

  12. Zhang, Y., Pan, E., Song, L., Saad, W., Dawy, Z., & Han, Z. (2015). Social network aware device-to-device communication in wireless networks. IEEE Transactions on Wireless Communications, 14, 177–190.

    Article  Google Scholar 

  13. Psaras, I., Rene, S., Katsaros, K. V., Sourlas, V., Pavlou, G., Bezirgiannidis, N., Diamantopoulos, S., Komnios, I., & Tsaoussidis, V. (2016). Keyword-based mobile application sharing. In MobiArch’16.

  14. Tseng, Y.-C., Ni, S.-Y., Chen, Y.-S., & Sheu, J.-P. (2002). The broadcast storm problem in a mobile ad hoc network. Wireless Networks, 8, 153–167.

    Article  MATH  Google Scholar 

  15. Ye, F., Chen, A., Lu, S., & Zhang, L. (2001). A scalable solution to minimum cost forwarding in large sensor networks. In ICCCN’2001.

  16. Wang, L., Bayhan, S., Ott, J., Kangasharju, J., Sathiaseelan, A., & Crowcroft, J. (2015). Pro-diluvian: Understanding scoped-flooding for content delivery in information-centric networking. In ACM ICN’15.

  17. Chen, W., Guha, R. K., Kwon, T. J., Lee, J., & Hsu, Y.-Y. (2011). A survey and challenges in routing and data dissemination in vehicular ad hoc networks. Wireless Communications and Mobile Computing, 11, 787–795.

    Article  Google Scholar 

  18. Zyba, G., Voelker, G. M., Ioannidis, S., & Diot C. (2011). Dissemination in opportunistic mobile ad-hoc networks: The power of the crowd. In IEEE Infocom.

  19. Drolia, U., Mickulicz, N., Gandhia, R., & Narasimhan, P. (2015). Krowd: A key-value store for crowded venues. In MobiArch’15.

  20. Ioannidis, S., Chaintreau, A., Massoulie, L. (2009). Optimal and scalable distribution of content updates over a mobile social network. In IEEE Infocom’09.

  21. Sasson, Y., Cavin, D., & Schiper, A. (2003). Probabilistic broadcast for flooding in wireless mobile ad hoc networks. In WCNC’03.

  22. Nand, P., & Sharma, S. C. (2011). Probability based improved broadcasting for AODV routing protocol. In ICCICS’11.

  23. Baccelli, E., Cordero, J. A., & Jacquet, P. (2010). Optimization of critical data synchronization via link overlay RNG in mobile ad hoc networks. In IEEE MASS.

  24. Cordero, J. A., Yi, J., & Clausen, T. (2014). An adaptive jitter mechanism for reactive route discovery in sensor networks. Sensors, 14, 14440–14471.

    Article  Google Scholar 

  25. Clausen, T., Dearlove, C., & Adamson, B. (2008). Jitter considerations in mobile ad hoc networks (manets). RFC 5148, IETF.

  26. Iosifidis, G., Gao, L., Huang, J., & Tassiulas, L. (2014). Enabling crowd-sourced mobile internet access. In IEEE INFOCOM.

  27. Kotz, D., Newport, C., & Elliott, C. (2003). The mistaken axioms of wireless-network research. Dartmouth College Computer Science Technical Report TR2003-467. http://www.people.cs.georgetown.edu/~cnewport/pubs/Axioms.pdf. Accessed 02 May 2018.

  28. Zhao, J., & Govindan, R. (2003). Understanding packet delivery performance in dense wireless sensor networks. In SenSys’03.

  29. Roy, R. R. (2010). Handbook of mobile ad hoc networks for mobility models. Berlin: Springer.

    MATH  Google Scholar 

  30. Carofiglio, G., Gallo, M., Muscariello, L., & Perino, D. (2011). Modeling data transfer in content-centric networking. In ITC’11.

  31. Chakeres, I., & Belding-Royer, E. (2005). AODV implementation design and performance evaluation. International Journal of Wireless and Mobile Computing, 2(3).

  32. Broch, J., Matz, D. A., Johnson, D. B., Hu, Y.-C., & Jetcheva, J. (1998). A performance comparison of multi-hop wireless ad hoc network routing protocol. In ACM MobiCom.

  33. Friedman, R., Hay, D., & Kliot, D. (2009). Jittering broadcast transmissions in manets: Quantification and implementation strategies. Technical Report, Department of Computer Science, Technion.

  34. Lenders, V., May, M., & Plattner, B. (2008). Density-based anycast: A robust routing strategy for wireless ad hoc networks. IEEE/ACM Transactions on Networking, 16, 852–863.

    Article  Google Scholar 

  35. Rhee, I., Shin, M., Hong, S., Lee, K., Kim, S., & Chong, S. (2009). Crawdad dataset ncsu/mobilitymodels (v. 2009-07-23). https://doi.org/10.15783/C7X302. http://crawdad.org/ncsu/mobilitymodels/2009-07-23.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Antonio Cordero.

Additional information

This work has been partly supported by Hong Kong Research Grants Council (GRF PolyU-521312), Hong Kong Polytechnic University (4-BCB6, G-YBJU), and National Natural Science Foundation of China (No. 61272463). It was also supported in part by the Cisco-Polytechnique Chaire Internet of Everything (http://www.Internet-of-Everything.fr/).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cordero, J.A., Lou, W. Take your time, get it closer: content dissemination within mobile pedestrian crowds. Wireless Netw 25, 3385–3403 (2019). https://doi.org/10.1007/s11276-018-1731-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1731-2

Keywords

Navigation