Skip to main content
Log in

Training size optimization with reduced complexity in cell-free massive MIMO system

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Training sequence is used in multiple antenna systems to estimate channel state information and mitigate channel distortion between transmitter and receiver. However, the training sequence or pilot must be limited to a certain size in order to reduce the impact of overhead loss due to limited channel coherence length in mobile users. In this paper, we proposed to use training size optimization in cell-free massive MIMO system. In addition, we proposed and compared the performance of different training size optimization algorithms, namely exhaustive search optimization, bisection optimization and min–max optimization, with each method has different level of calculation complexities. The results showed that in general, all of the 3 training length optimization methods improved the downlink rate compared to the conventional pilot length method. We also showed that the training optimization methods are more effective when the coherence length is small or the number of users is very large. In the case of large number of users or small coherence length, the exhaustive search has the best median downlink rate, followed closely by min–max optimum and finally the bisection method. Even though the exhaustive search optimization has the best downlink rate, we showed that the proposed reduce optimization complexity methods has significantly less calculation complexity. In addition, the median downlink rate performance of min–max optimization method is only slightly less than that of the exhaustive search method for various number of users and coherence length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30, 40–60.

    Article  Google Scholar 

  2. Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52, 186–195.

    Article  Google Scholar 

  3. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8, 742–758.

    Article  Google Scholar 

  4. Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16, 1834–1850.

    Article  Google Scholar 

  5. Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2015). Cell-free massive MIMO: Uniformly great service for everyone. In Proceedings of IEEE international workshop signal processing advanced wireless communications (SPAWC), Stockholm, Sweden, pp. 201–205.

  6. Heath, R. W., Jr., Wu, T., Kwon, Y. H., & Soong, A. C. K. (2011). Multiuser MIMO in distributed antenna systems with out-of-cell interference. IEEE Transactions on Signal Processing, 59(10), 4885–4899.

    Article  MathSciNet  MATH  Google Scholar 

  7. Feng, W., Wang, Y., Ge, N., Lu, J., & Zhang, J. (2013). Virtual MIMO in multi-cell distributed antenna systems: Coordinated transmissions with large-scale CSIT. IEEE Journal on Selected Areas in Communications, 31, 2067–2081.

    Article  Google Scholar 

  8. Ma, J., Zhang, S., Li, H., Zhao, N., & Leung, V. C. M. (2018). Interference-alignment and soft-space-reuse based cooperative transmission for multi-cell massive MIMO networks. IEEE Transactions on Wireless Communications, 17(3), 1907–1922.

    Article  Google Scholar 

  9. Ma, J., Zhang, S., Li, H., Zhao, N., & Leung, V. C. M. (2017). Base station selection for massive MIMO networks with two-stage precoding. IEEE Wireless Communications Letters, 6(5), 598–601.

    Article  Google Scholar 

  10. Ma, J., Zhang, S., Li, H., Zhao, N., & Nallanathan, A. (2017). Pattern division for massive MIMO networks with two-stage precoding. IEEE Communications Letters, 21(7), 1665–1668.

    Article  Google Scholar 

  11. Buzzi, S., & D’Andrea, C. (2017). Cell-free massive MIMO: User-centric approach. IEEE Wireless Communications Letters, 6(6), 706–709.

    Article  Google Scholar 

  12. Bashar, M., Cumanan, K., Burr, A. G., Ngo, H. Q., & Debbah, M. (2018). Cell-free massive MIMO with limited backhaul. In Proceeding of IEEE ICC, pp. 1–7.

  13. Nguyen, T. H., Nguyen, T. K., Han, H. D., & Nguyen, V. D. Optimal power control and load balancing for uplink cell-free multi-user massive MIMO. In IEEE access, Vol. PP, No. 99, pp. 1–1.

  14. Ngo, H. Q., Tran, L. N., Duong, T. Q., Matthaiou, M., & Larsson, E. G. (2018). On the total energy efficiency of cell-free massive MIMO. IEEE Transactions on Green Communications and Networking, 2(1), 25–39.

    Article  Google Scholar 

  15. Nguyen, L. D., Duong, T. Q., Ngo, H. Q., & Tourki, K. (2017). Energy efficiency in cell-free massive MIMO with zero-forcing precoding design. IEEE Communications Letters, 21(8), 1871–1874.

    Article  Google Scholar 

  16. Marzetta, T. L., & Hochwald, B. M. (1999). Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading. IEEE Transactions on Information Theory, 45, 139–157.

    Article  MathSciNet  MATH  Google Scholar 

  17. Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9, 3590–3600.

    Article  Google Scholar 

  18. Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10, 2640–2651.

    Article  Google Scholar 

  19. Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31, 160–171.

    Article  Google Scholar 

  20. Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61, 1436–1449.

    Article  Google Scholar 

  21. Ma, X., Yang, L., & Giannakis, G. B. (2005). Optimal training for MIMO frequency-selective fading channels. IEEE Transactions on Wireless Communications, 4(2), 453–466.

    Article  Google Scholar 

  22. Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Optimal channel training in uplink network MIMO systems. IEEE Transactions on Signal Processing, 59(6), 2824–2833.

    Article  MathSciNet  MATH  Google Scholar 

  23. Savazzi, S., & Spagnolini, U. (2009). Optimizing training lengths and training intervals in time-varying fading channels. IEEE Transactions on Signal Processing, 57(3), 1098–1112.

    Article  MathSciNet  MATH  Google Scholar 

  24. Sheng, Z., Tuan, H. D., Nguyen, H. H., & Debbah, M. (2017). Optimal training sequences for large-scale MIMO-OFDM systems. IEEE Transactions on Signal Processing, 65(13), 3329–3343.

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu, Y., Elkashlan, M., Ding, Z., & Karagiannidis, G. K. (2016). Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Communications Letters, 20(7), 1465–1468.

    Google Scholar 

  26. Huh, H., Moon, S. H., Kim, Y. T., Lee, I., & Caire, G. (2011). Multi-cell MIMO downlink with cell cooperation and fair scheduling: A large-system limit analysis. IEEE Transactions on Information Theory, 57(12), 7771–7786.

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen, D. C., Quek, T. Q. S., & Kountouris, M. (2015). Backhauling in heterogeneous cellular networks: Modeling and tradeoffs. IEEE Transactions on Wireless Communications, 14(6), 3194–3206.

    Article  Google Scholar 

  28. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  29. Rappaport, T. S. (2002). Wireless communications: Principles and practice. Upper Saddle River, NJ: Prentice-Hall Inc.

    MATH  Google Scholar 

  30. Burden, R. L., & Faires, J. D. (1985). Numerical analysis (3rd ed.). Boston, MA: Prindle, Weber & Schmidt.

    MATH  Google Scholar 

  31. Simon, M. K. (2007). Probability distributions involving Gaussian random variables: A handbook for engineers and scientists. Berlin: Springer.

    MATH  Google Scholar 

Download references

Acknowledgements

This work is funded by University Malaya Research Fund Assistance (BKP) (Grand No. BK051-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Amirul Mahyiddin.

Appendices

Appendix 1: Channel estimation

In order to transmit data from APs to the desired UEs using spatial multiplexing, it is necessary to acquire channel information between the transmitter and receiver through estimation. In our system model, the channel estimation is done at each AP using received uplink pilot from the UEs during the training phase. We use minimum mean square error (MMSE) channel estimation in order to obtain the lower bound ergodic downlink rate [18]. Even though not every UE is connected to every AP, this does not mean that APs can avoid receiving signal from non-connected UEs during the training phase. This is because an AP will receive signal from any UE as long as the large scale fading coefficient between the AP and UE is not zero. Since AP can receive pilot from any UEs, this may create interference during the training phase. As a results, pilot signal received at AP \(l\) from \(K\) UEs in the cell can be express as

$$\varvec{Y}_{l} = \sqrt {P_{\text{p}} } \mathop \sum \limits_{k = 1}^{K} \phi_{k} \varvec{g}_{lk} + \varvec{N}_{l}$$
(14)

where

  • \(\varvec{Y}_{l}\) is \(\tau \times M\) received pilot signal at AP \(l\),

  • \(P_{\text{p}}\) is uplink pilot power,

  • \({{\varvec\phi }}_{k}\) is \(\tau \times 1\) pilot from UE \(k\),

  • \(\varvec{N}_{l}\) is \(\tau \times M\) noise signal at AP \(l\) with each element has \({\mathcal{C}\mathcal{N}}\left( {0, 1} \right)\) distribution.

To estimate the channel for UE \(k\), we obtain channel projection of the received pilot signal, (14), with the actual pilot signal from UE \(k\), \(\phi_{k}\), as follows [19]

$${\check{\varvec{y}}}_{lk} = {{\varvec\phi }}_{k}^{H} \varvec{Y}_{l} = \sqrt {P_{\text{p}} } \mathop \sum \limits_{{k^{\prime} = 1}}^{K} {{\varvec\phi }}_{k}^{H} \phi_{{k^{\prime}}} \varvec{g}_{{lk^{\prime}}} + {{\varvec\phi }}_{k}^{H} \varvec{N}_{l}.$$
(15)

Using (15), we can obtain MMSE channel estimate as [4]

$$\hat{\varvec{g}}_{lk} = \theta_{lk} {\check{\varvec{y}}}_{lk},$$
(16)

where

$$\theta_{lk} = \frac{{\sqrt {P_{\text{p}} } \tau \beta_{lk} }}{{P_{\text{p}} \mathop \sum \nolimits_{{k^{\prime} = 1}}^{K} \left| {{{\varvec\phi }}_{{k^{\prime}}}^{H} {{\varvec\phi }}_{k} } \right|^{2} \beta_{{lk^{\prime}}} + \tau }}.$$
(17)

The covariance of \(\hat{\varvec{g}}_{lk}\) can be written as [4]

$${\mathbb{E}}\left[ {\hat{\varvec{g}}_{lk}^{H} \hat{\varvec{g}}_{lk} } \right] = \frac{{P_{\text{p}} \tau^{2} \beta_{lk}^{2} }}{{P_{\text{p}} \mathop \sum \nolimits_{{k^{\prime} = 1}}^{K} \left| {{{\varvec\phi }}_{{k^{\prime}}}^{H} {{\varvec\phi }}_{k} } \right|^{2} \beta_{{lk^{\prime}}} + \tau }}\varvec{I}_{M} = \gamma_{lk} \varvec{I}_{M},$$
(18)

where \(\gamma_{lk} = \frac{{P_{p} \tau^{2} \beta_{lk}^{2} }}{{P_{p} \mathop \sum \nolimits_{{k^{\prime} = 1}}^{K} \left| {{{\varvec\phi }}_{{k^{\prime}}}^{H} {{\varvec\phi }}_{k} } \right|^{2} \beta_{{lk^{\prime}}} + \tau }}.\)

The error for MMSE channel estimate, \(\tilde{\varvec{g}}_{lk} = \varvec{g}_{lk} - \hat{\varvec{g}}_{lk}\), is uncorrelated with \(\hat{\varvec{g}}_{lk}\) and has the following covariance

$${\mathbb{E}}\left[ {\tilde{\varvec{g}}_{lk}^{H} \tilde{\varvec{g}}_{lk} } \right] = {\mathbb{E}}\left[ {\varvec{g}_{lk}^{H} \varvec{g}_{lk} } \right] - {\mathbb{E}}\left[ {\hat{\varvec{g}}_{lk}^{H} \hat{\varvec{g}}_{lk} } \right] = \left( {\beta_{lk} - \gamma_{lk} } \right)\varvec{I}_{M}.$$
(19)

By using (18) and (19), along with Chi-squared moment properties [31], we obtain the following identities

$${\mathbb{E}}\left[ {{||\hat{\varvec{g}}}_{lk}||^{2} } \right] = M\gamma_{lk},$$
(20)
$${\mathbb{E}}\left[ {||\hat{\varvec{g}}_{lk}||^{4} } \right] = \left( {M + 1} \right)\gamma_{lk}^{2},$$
(21)
$${\mathbb{E}}\left[ {{||\hat{\varvec{g}}}_{{lk^{\prime}}}||^{2} \hat{||\varvec{g}}_{lk}||^{2} } \right] = M^{2} \gamma_{{lk^{\prime}}} \gamma_{lk} \quad {\text{for}}\quad k^{\prime} \ne k,$$
(22)
$${\mathbb{E}}\left[ {\left| {{|\tilde{\varvec{g}}}_{lk} \hat{\varvec{g}}_{lk}^{H} } \right|^{2} } \right] = \left( {\beta_{lk} - \gamma_{lk} } \right)\gamma_{lk} M.$$
(23)

Appendix 2: Closed form ergodic lower bound downlink rate

We can express the lower bound downlink rate for UE \(k\) as

$$R_{k} = \left( { \frac{{T_{\text{coh}} - \tau }}{{T_{\text{coh}} }}} \right)\log_{2} \left( {1 + \frac{{S_{k} }}{{N_{k} }}} \right),$$
(24)

where \(S_{k}\) is the effective average desired power while \(N_{k}\) is the average interference and noise power. Based from lower bound ergodic downlink rate theorem [20], we can write \(S_{k}\) as

$$S_{k} = \left| {{\mathcal{D}}_{k} } \right|^{2}$$

Using \({\mathcal{D}}_{k}\) from (6), \(S_{k}\) can be written as [14]

$$S_{k} = \left| {\sqrt {P_{\text{d}} } \sum\limits_{{l \in {\mathcal{L}}_{k} }} {\rho_{lk}^{1/2} {\mathbb{E}}} \left[ {\varvec{g}_{lk} \hat{\varvec{g}}_{lk}^{H} } \right]} \right|^{2}$$
(25)
$$= P_{\text{d}} M^{2} \left| {\mathop \sum \limits_{{l \in {\mathcal{L}}_{k} }}^{{}} \rho_{lk}^{1/2} \gamma_{lk} } \right|^{2}.$$
(26)

\(N_{k}\) is the interference power which can be obtained from the average power of the total received signal, \(x_{k}\), minus the effective desired signal at UE \(k\), \({\mathcal{D}}_{k}\), as follows

$$N_{k} = {\mathbb{E}}\left[ {\left| {x_{k} - {\mathcal{D}}_{k} d_{k} } \right|^{2} } \right]$$
(27)

From (16), we can write \(N_{k}\) as

$$N_{k} = {\mathbb{E}}\left[ {\left| {{\mathcal{C}}_{k} d_{k} + \mathop \sum \limits_{k' \ne k}^{K} {\mathcal{M}}_{{kk^{\prime}}} d_{{k^{\prime}}} + n_{k} } \right|^{2} } \right].$$
(28)

Since the downlink data \(d_{k}\) is not correlated for different value of \(k\), then \({\mathcal{M}}_{{kk^{\prime}}}\) is not correlated for different \(k^{\prime}\). This also means \({\mathcal{C}}_{k}\) is not correlated with \({\mathcal{M}}_{{kk^{\prime}}}\). Hence, \(N_{k}\) becomes

$$N_{k} = {\mathbb{E}}\left[ {\left| {{\mathcal{C}}_{k} } \right|^{2} } \right] + \mathop \sum \limits_{k' \ne k}^{K} {\mathbb{E}}\left[ {\left| {{\mathcal{M}}_{{kk^{\prime}}} } \right|^{2} } \right] + 1.$$
(29)

Substituting (15) and (16) into \({\mathcal{C}}_{k}\) in (6), and applying expectation properties from (20) to (23), we can solve \({\mathbb{E}}\left[ {\left| {{\mathcal{C}}_{k} } \right|^{2} } \right]\) in (29) and get [14]

$${\mathbb{E}}\left[ {\left| {{\mathcal{C}}_{k} } \right|^{2} } \right] = P_{\text{d}} \mathop \sum \limits_{{l \in {\mathcal{L}}_{k} }}^{{}} \rho_{lk} \left( {\left( {M^{2} + M} \right)\gamma_{lk}^{2} + M\gamma_{lk} \left( {\beta_{lk} - \gamma_{lk} } \right) - M^{2} \gamma_{lk}^{2} } \right) = P_{\text{d}} \mathop \sum \limits_{{l \in {\mathcal{L}}_{k} }}^{{}} \rho_{lk} M\gamma_{lk} \beta_{lk}.$$
(30)

Substituting (15) and (16) into \({\mathcal{M}}_{{kk^{\prime}}}\) in (6), and applying expectation properties from (20) to (23), the expectation variable \({\mathbb{E}}\left[ {\left| {{\mathcal{M}}_{{kk^{\prime}}} } \right|^{2} } \right]\) in (29) can be solved as [14]

$${\mathbb{E}}\left[ {\left| {{\mathcal{M}}_{{kk^{\prime}}} } \right|^{2} } \right] = P_{\text{p}} P_{\text{d}} \left( {\left| {\phi_{k}^{H} \phi_{{k^{\prime}}} } \right|^{2} \left( {\mathop \sum \limits_{{l \in {\mathcal{L}}_{k} }}^{{}} \mathop \sum \limits_{{l_{1} \in {\mathcal{L}}_{k} }}^{{}} \rho_{{lk^{\prime}}}^{1/2} \theta_{{lk^{\prime}}} \rho_{{l_{1} k^{\prime}}}^{1/2} \theta_{{l_{1} k^{\prime}}} \beta_{lk} \beta_{{l_{1} k}} M^{2} } \right) + \mathop \sum \limits_{{l \in {\mathcal{L}}_{k} }}^{{}} \mathop \sum \limits_{i = 1}^{K} \rho_{{lk^{\prime}}} \theta_{{lk^{\prime}}}^{2} \beta_{lk} \beta_{li} M\left| {\phi_{i}^{H} \phi_{{k^{\prime}}} } \right|^{2} } \right) + P_{\text{d}} \tau \mathop \sum \limits_{{l \in {\mathcal{L}}_{k} }}^{{}} \rho_{{lk^{\prime}}} \theta_{{lk^{\prime}}}^{2} \beta_{lk} M$$
(31)

Substituting (26), (29), (30) and (31) into (24), the ergodic lower bound downlink rate becomes (7).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, S.M.S., Mahyiddin, W.A., Zakaria, N.A. et al. Training size optimization with reduced complexity in cell-free massive MIMO system. Wireless Netw 25, 1983–1994 (2019). https://doi.org/10.1007/s11276-018-1791-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-018-1791-3

Keywords

Navigation